{"title":"开发用于生物3D打印的淀粉基支撑材料与明胶基生物墨水交替挤压","authors":"Pekik Wiji Prasetyaningrum, Wildan Mubarok, Takashi Kotani, Shinji Sakai","doi":"10.1016/j.bprint.2025.e00439","DOIUrl":null,"url":null,"abstract":"<div><div>The use of support materials is crucial for the 3D bioprinting of low-viscosity bioinks, which yield soft hydrogel constructs susceptible to deformation under their weight. In this study, we developed a starch-based support material that provides structural support during printing and supplies hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), for printing cell-laden constructs from low-viscosity bioinks (4.4–53.1 mPa s at 1 s<sup>−1</sup> shear rate) composed of a gelatin derivative possessing phenolic hydroxyl moieties (gelatin-Ph), horseradish peroxidase (HRP), and cells. Importantly, the support material can be selectively and gently removed using α-amylase, a biocompatible enzyme, without harming the construct or encapsulated cells, which is a significant advancement over conventional methods of removing support systems. 3D constructs were fabricated by alternately extruding bioinks containing 5.0 w/v% gelatin-Ph and 10 U/mL HRP with a support material consisting of 16.7 w/w% starch and 10 mM H<sub>2</sub>O<sub>2</sub>. Immortalized human bone marrow-derived mesenchymal stem cells encapsulated within the constructs showed >80 % viability after printing and exhibited an elongated morphology and proliferation, while maintaining their stemness over 14 days of culture. The cells underwent osteogenic differentiation when cultured in a differentiation medium, as evidenced by the calcium deposition, alkaline phosphatase activity, and expression of osteogenic genes, demonstrating the potential of the proposed approach for tissue-engineering applications.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"51 ","pages":"Article e00439"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of starch-based support material alternately extruded with gelatin-based bioinks for 3D bioprinting application\",\"authors\":\"Pekik Wiji Prasetyaningrum, Wildan Mubarok, Takashi Kotani, Shinji Sakai\",\"doi\":\"10.1016/j.bprint.2025.e00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of support materials is crucial for the 3D bioprinting of low-viscosity bioinks, which yield soft hydrogel constructs susceptible to deformation under their weight. In this study, we developed a starch-based support material that provides structural support during printing and supplies hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), for printing cell-laden constructs from low-viscosity bioinks (4.4–53.1 mPa s at 1 s<sup>−1</sup> shear rate) composed of a gelatin derivative possessing phenolic hydroxyl moieties (gelatin-Ph), horseradish peroxidase (HRP), and cells. Importantly, the support material can be selectively and gently removed using α-amylase, a biocompatible enzyme, without harming the construct or encapsulated cells, which is a significant advancement over conventional methods of removing support systems. 3D constructs were fabricated by alternately extruding bioinks containing 5.0 w/v% gelatin-Ph and 10 U/mL HRP with a support material consisting of 16.7 w/w% starch and 10 mM H<sub>2</sub>O<sub>2</sub>. Immortalized human bone marrow-derived mesenchymal stem cells encapsulated within the constructs showed >80 % viability after printing and exhibited an elongated morphology and proliferation, while maintaining their stemness over 14 days of culture. The cells underwent osteogenic differentiation when cultured in a differentiation medium, as evidenced by the calcium deposition, alkaline phosphatase activity, and expression of osteogenic genes, demonstrating the potential of the proposed approach for tissue-engineering applications.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"51 \",\"pages\":\"Article e00439\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Development of starch-based support material alternately extruded with gelatin-based bioinks for 3D bioprinting application
The use of support materials is crucial for the 3D bioprinting of low-viscosity bioinks, which yield soft hydrogel constructs susceptible to deformation under their weight. In this study, we developed a starch-based support material that provides structural support during printing and supplies hydrogen peroxide (H2O2), for printing cell-laden constructs from low-viscosity bioinks (4.4–53.1 mPa s at 1 s−1 shear rate) composed of a gelatin derivative possessing phenolic hydroxyl moieties (gelatin-Ph), horseradish peroxidase (HRP), and cells. Importantly, the support material can be selectively and gently removed using α-amylase, a biocompatible enzyme, without harming the construct or encapsulated cells, which is a significant advancement over conventional methods of removing support systems. 3D constructs were fabricated by alternately extruding bioinks containing 5.0 w/v% gelatin-Ph and 10 U/mL HRP with a support material consisting of 16.7 w/w% starch and 10 mM H2O2. Immortalized human bone marrow-derived mesenchymal stem cells encapsulated within the constructs showed >80 % viability after printing and exhibited an elongated morphology and proliferation, while maintaining their stemness over 14 days of culture. The cells underwent osteogenic differentiation when cultured in a differentiation medium, as evidenced by the calcium deposition, alkaline phosphatase activity, and expression of osteogenic genes, demonstrating the potential of the proposed approach for tissue-engineering applications.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.