基于深度koopman的未知非线性系统数据驱动预测控制可达性分析

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Teketel Ketema , Surafel Luleseged Tilahun , Simon D. Zawka , Abebe Geletu
{"title":"基于深度koopman的未知非线性系统数据驱动预测控制可达性分析","authors":"Teketel Ketema ,&nbsp;Surafel Luleseged Tilahun ,&nbsp;Simon D. Zawka ,&nbsp;Abebe Geletu","doi":"10.1016/j.ifacsc.2025.100339","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a deep Koopman-based reachability analysis technique for a data-driven control of unknown nonlinear systems subject to process and measurement noises. An intelligent approach combining a neural network and Q-learning algorithm is employed. In particular, the power of the Long Short-Term Memory (LSTM) neural network is leveraged to lift the original nonlinear system into a higher-dimensional space, where the nonlinear dynamics can be approximated linearly, relying solely on the input–output data. The LSTM is set to draw learning insights from Extended Dynamic Mode Decomposition (EDMD) and Information-Theoretic Metric Function (ITMF) results. The Q-learning algorithm is employed to compute adaptive input–output references in the implementation of an adaptive nonlinear zonotopic predictive control technique to compute a robust control input of the system. We also introduced controllability and observability criteria in the presence of noisy data. Finally, a numerical example is given to verify the proposed approach.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"34 ","pages":"Article 100339"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Koopman-based reachability analysis for data-driven predictive control of unknown nonlinear systems\",\"authors\":\"Teketel Ketema ,&nbsp;Surafel Luleseged Tilahun ,&nbsp;Simon D. Zawka ,&nbsp;Abebe Geletu\",\"doi\":\"10.1016/j.ifacsc.2025.100339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a deep Koopman-based reachability analysis technique for a data-driven control of unknown nonlinear systems subject to process and measurement noises. An intelligent approach combining a neural network and Q-learning algorithm is employed. In particular, the power of the Long Short-Term Memory (LSTM) neural network is leveraged to lift the original nonlinear system into a higher-dimensional space, where the nonlinear dynamics can be approximated linearly, relying solely on the input–output data. The LSTM is set to draw learning insights from Extended Dynamic Mode Decomposition (EDMD) and Information-Theoretic Metric Function (ITMF) results. The Q-learning algorithm is employed to compute adaptive input–output references in the implementation of an adaptive nonlinear zonotopic predictive control technique to compute a robust control input of the system. We also introduced controllability and observability criteria in the presence of noisy data. Finally, a numerical example is given to verify the proposed approach.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"34 \",\"pages\":\"Article 100339\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601825000458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度koopman的可达性分析技术,用于受过程和测量噪声影响的未知非线性系统的数据驱动控制。采用了神经网络和q -学习算法相结合的智能方法。特别是,利用长短期记忆(LSTM)神经网络的力量将原始非线性系统提升到高维空间,在高维空间中,非线性动力学可以线性近似,仅依赖于输入输出数据。LSTM旨在从扩展动态模式分解(EDMD)和信息论度量函数(ITMF)结果中获得学习见解。在实现自适应非线性分区预测控制技术中,采用q -学习算法计算自适应输入输出参考,计算系统的鲁棒控制输入。我们还介绍了在存在噪声数据的情况下的可控性和可观测性准则。最后,给出了一个数值算例来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Koopman-based reachability analysis for data-driven predictive control of unknown nonlinear systems
This paper proposes a deep Koopman-based reachability analysis technique for a data-driven control of unknown nonlinear systems subject to process and measurement noises. An intelligent approach combining a neural network and Q-learning algorithm is employed. In particular, the power of the Long Short-Term Memory (LSTM) neural network is leveraged to lift the original nonlinear system into a higher-dimensional space, where the nonlinear dynamics can be approximated linearly, relying solely on the input–output data. The LSTM is set to draw learning insights from Extended Dynamic Mode Decomposition (EDMD) and Information-Theoretic Metric Function (ITMF) results. The Q-learning algorithm is employed to compute adaptive input–output references in the implementation of an adaptive nonlinear zonotopic predictive control technique to compute a robust control input of the system. We also introduced controllability and observability criteria in the presence of noisy data. Finally, a numerical example is given to verify the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信