{"title":"不锈钢六角空心截面柱整体屈曲行为及设计","authors":"Yukai Zhong , Ziyi Wang , Ou Zhao","doi":"10.1016/j.tws.2025.113986","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to their high load-carrying capacity, ease of constructability and superior corrosion resistance, stainless steel polygonal hollow section members have great potential to be used in practical engineering. However, the absence of relevant design codes hinders their engineering applications. To address this issue, this paper conducts experimental and numerical studies on the flexural buckling behaviour and resistances of stainless steel hexagonal hollow section columns. A testing programme was carried out on ten column specimens designed with different cross-section dimensions and member lengths, together with tensile coupon tests and initial geometric imperfection measurements. A numerical modelling programme was then performed to develop and validate finite element models based on the test results. The validated FE models were adopted to carry out parametric studies to generate further numerical data to supplement the test data, which were then employed for the evaluations of design rules set out in the European code, American specification and ASCE standard. The evaluation results generally revealed that the European code and American specification resulted in an acceptable level of accuracy and consistency in predicting the flexural buckling resistances of stainless steel hexagonal hollow section columns, although some resistances of columns with low member slendernesses were overestimated, while the ASCE standard provided rather unsafe resistance predictions. Finally, a revised ASCE design buckling curve was proposed.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113986"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global buckling behaviour and design of stainless steel hexagonal hollow section columns\",\"authors\":\"Yukai Zhong , Ziyi Wang , Ou Zhao\",\"doi\":\"10.1016/j.tws.2025.113986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to their high load-carrying capacity, ease of constructability and superior corrosion resistance, stainless steel polygonal hollow section members have great potential to be used in practical engineering. However, the absence of relevant design codes hinders their engineering applications. To address this issue, this paper conducts experimental and numerical studies on the flexural buckling behaviour and resistances of stainless steel hexagonal hollow section columns. A testing programme was carried out on ten column specimens designed with different cross-section dimensions and member lengths, together with tensile coupon tests and initial geometric imperfection measurements. A numerical modelling programme was then performed to develop and validate finite element models based on the test results. The validated FE models were adopted to carry out parametric studies to generate further numerical data to supplement the test data, which were then employed for the evaluations of design rules set out in the European code, American specification and ASCE standard. The evaluation results generally revealed that the European code and American specification resulted in an acceptable level of accuracy and consistency in predicting the flexural buckling resistances of stainless steel hexagonal hollow section columns, although some resistances of columns with low member slendernesses were overestimated, while the ASCE standard provided rather unsafe resistance predictions. Finally, a revised ASCE design buckling curve was proposed.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"218 \",\"pages\":\"Article 113986\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823125010754\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125010754","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Global buckling behaviour and design of stainless steel hexagonal hollow section columns
Owing to their high load-carrying capacity, ease of constructability and superior corrosion resistance, stainless steel polygonal hollow section members have great potential to be used in practical engineering. However, the absence of relevant design codes hinders their engineering applications. To address this issue, this paper conducts experimental and numerical studies on the flexural buckling behaviour and resistances of stainless steel hexagonal hollow section columns. A testing programme was carried out on ten column specimens designed with different cross-section dimensions and member lengths, together with tensile coupon tests and initial geometric imperfection measurements. A numerical modelling programme was then performed to develop and validate finite element models based on the test results. The validated FE models were adopted to carry out parametric studies to generate further numerical data to supplement the test data, which were then employed for the evaluations of design rules set out in the European code, American specification and ASCE standard. The evaluation results generally revealed that the European code and American specification resulted in an acceptable level of accuracy and consistency in predicting the flexural buckling resistances of stainless steel hexagonal hollow section columns, although some resistances of columns with low member slendernesses were overestimated, while the ASCE standard provided rather unsafe resistance predictions. Finally, a revised ASCE design buckling curve was proposed.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.