海藻酸铵和纤维素纳米纤维为基础的海葵触须启发比色气敏气凝胶,实现超灵敏的氨视觉检测

IF 12.5 1区 化学 Q1 CHEMISTRY, APPLIED
Yanghang Liu , Lizhi Wang , Zirun Zhan , Yu Jiang , Xun Zhang , Yunhe Li , Xin Zhong , Dan Yu , Wei Wang
{"title":"海藻酸铵和纤维素纳米纤维为基础的海葵触须启发比色气敏气凝胶,实现超灵敏的氨视觉检测","authors":"Yanghang Liu ,&nbsp;Lizhi Wang ,&nbsp;Zirun Zhan ,&nbsp;Yu Jiang ,&nbsp;Xun Zhang ,&nbsp;Yunhe Li ,&nbsp;Xin Zhong ,&nbsp;Dan Yu ,&nbsp;Wei Wang","doi":"10.1016/j.carbpol.2025.124435","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time visual detection of ammonia (NH₃) is crucial for environmental safety and food quality, yet traditional sensors often suffer from slow response, poor selectivity, and limited adaptability. Here, we innovatively report an ammonium alginate (AL) and cellulose nanofiber-based colorimetric aerogel (APPC aerogel) with a sea anemone-inspired structure for rapid, sensitive, and reversible NH₃ detection. The aerogel is prepared by embedding a sulfonated indole photoacid (PMU<img>H) into a matrix of AL, cellulose nanofibers (CNF), and phytic acid (PA), cast into a 3D-printed template, and directionally frozen to form an ordered porous bionic structure. Upon NH₃ exposure, PMU-H undergoes fast, reversible proton transfer and enol-keto tautomerization, producing a color change from yellow to purplish-red within 5 s. The aerogel shows a detection limit of 0.65 ppm, a linear range of 1–250 ppm, and maintains performance over 50 cycles. FTIR and DFT analyses reveal the sensing mechanism. The material remains stable under humidity, temperature variations, and complex gases, enabling effective visual monitoring of NH₃ during seafood spoilage and offering promise for food packaging, environmental monitoring, and safety applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"370 ","pages":"Article 124435"},"PeriodicalIF":12.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonium alginate and cellulose nanofiber-based sea anemone tentacle-inspired colorimetric gas-sensitive aerogel enabling ultra-sensitive ammonia visual detection\",\"authors\":\"Yanghang Liu ,&nbsp;Lizhi Wang ,&nbsp;Zirun Zhan ,&nbsp;Yu Jiang ,&nbsp;Xun Zhang ,&nbsp;Yunhe Li ,&nbsp;Xin Zhong ,&nbsp;Dan Yu ,&nbsp;Wei Wang\",\"doi\":\"10.1016/j.carbpol.2025.124435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time visual detection of ammonia (NH₃) is crucial for environmental safety and food quality, yet traditional sensors often suffer from slow response, poor selectivity, and limited adaptability. Here, we innovatively report an ammonium alginate (AL) and cellulose nanofiber-based colorimetric aerogel (APPC aerogel) with a sea anemone-inspired structure for rapid, sensitive, and reversible NH₃ detection. The aerogel is prepared by embedding a sulfonated indole photoacid (PMU<img>H) into a matrix of AL, cellulose nanofibers (CNF), and phytic acid (PA), cast into a 3D-printed template, and directionally frozen to form an ordered porous bionic structure. Upon NH₃ exposure, PMU-H undergoes fast, reversible proton transfer and enol-keto tautomerization, producing a color change from yellow to purplish-red within 5 s. The aerogel shows a detection limit of 0.65 ppm, a linear range of 1–250 ppm, and maintains performance over 50 cycles. FTIR and DFT analyses reveal the sensing mechanism. The material remains stable under humidity, temperature variations, and complex gases, enabling effective visual monitoring of NH₃ during seafood spoilage and offering promise for food packaging, environmental monitoring, and safety applications.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"370 \",\"pages\":\"Article 124435\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725012196\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725012196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH₃)的实时视觉检测对环境安全和食品质量至关重要,但传统的传感器往往存在反应慢、选择性差、适应性有限的问题。在这里,我们创新地报道了一种海藻酸铵(AL)和纤维素纳米纤维基比色气凝胶(APPC气凝胶),它具有海葵启发的结构,用于快速、敏感和可逆的NH₃检测。气凝胶是通过将磺化吲哚光酸(PMUH)嵌入AL、纤维素纳米纤维(CNF)和植酸(PA)的基质中,浇上3d打印模板,定向冷冻形成有序的多孔仿生结构来制备的。在NH₃的照射下,PMU-H会经历快速、可逆的质子转移和烯醇-酮的互变异构反应,在5秒内从黄色变成紫红色。气凝胶的检出限为0.65 ppm,线性范围为1-250 ppm,并且在50次循环中保持性能。FTIR和DFT分析揭示了传感机理。该材料在湿度、温度变化和复杂气体下保持稳定,能够在海鲜变质过程中有效地可视化监测NH₃,并为食品包装、环境监测和安全应用提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ammonium alginate and cellulose nanofiber-based sea anemone tentacle-inspired colorimetric gas-sensitive aerogel enabling ultra-sensitive ammonia visual detection

Ammonium alginate and cellulose nanofiber-based sea anemone tentacle-inspired colorimetric gas-sensitive aerogel enabling ultra-sensitive ammonia visual detection
Real-time visual detection of ammonia (NH₃) is crucial for environmental safety and food quality, yet traditional sensors often suffer from slow response, poor selectivity, and limited adaptability. Here, we innovatively report an ammonium alginate (AL) and cellulose nanofiber-based colorimetric aerogel (APPC aerogel) with a sea anemone-inspired structure for rapid, sensitive, and reversible NH₃ detection. The aerogel is prepared by embedding a sulfonated indole photoacid (PMUH) into a matrix of AL, cellulose nanofibers (CNF), and phytic acid (PA), cast into a 3D-printed template, and directionally frozen to form an ordered porous bionic structure. Upon NH₃ exposure, PMU-H undergoes fast, reversible proton transfer and enol-keto tautomerization, producing a color change from yellow to purplish-red within 5 s. The aerogel shows a detection limit of 0.65 ppm, a linear range of 1–250 ppm, and maintains performance over 50 cycles. FTIR and DFT analyses reveal the sensing mechanism. The material remains stable under humidity, temperature variations, and complex gases, enabling effective visual monitoring of NH₃ during seafood spoilage and offering promise for food packaging, environmental monitoring, and safety applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信