TSIG:利用时间和空间域特征的地磁室内定位方法

IF 4.8 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ao Liu, Wenguang Wang
{"title":"TSIG:利用时间和空间域特征的地磁室内定位方法","authors":"Ao Liu,&nbsp;Wenguang Wang","doi":"10.1016/j.adhoc.2025.104023","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous methods for geomagnetic positioning, using traditional or deep learning techniques, have made significant strides in indoor positioning. Nevertheless, geomagnetic mismatching still leads to considerable errors in positioning accuracy. To address this problem, we explore geomagnetic positioning in both the time and spatial domains concurrently. We propose a novel method named TSIG. In the temporal domain, we propose a multi-scale attention module with geomagnetic hierarchical embedding, named TIG. We first extract the temporal dependencies of geomagnetic subsequences at certain time scales from both local and global perspectives. Then, we use the extracted information to capture anomalies at different time scales and determine each scale’s contribution to the importance of features. In the spatial domain, we incorporate geomagnetic signal characteristics and propose a geomagnetic anomaly focusing and direction perception-driven feature extraction module named SIG. We reconstruct the geomagnetic sequences into images and further extract the spatial features using anomaly focusing and direction perception, thereby enhancing the representational capacity of the spatial features. Finally, the temporal and spatial domain features are input into the spatiotemporal feature fusion layer to achieve cross-domain feature fusion, generating the positioning result. The experimental results show that the proposed TSIG method can achieve accurate positioning.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"179 ","pages":"Article 104023"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSIG: A geomagnetic indoor positioning method leveraging temporal and spatial domain features\",\"authors\":\"Ao Liu,&nbsp;Wenguang Wang\",\"doi\":\"10.1016/j.adhoc.2025.104023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerous methods for geomagnetic positioning, using traditional or deep learning techniques, have made significant strides in indoor positioning. Nevertheless, geomagnetic mismatching still leads to considerable errors in positioning accuracy. To address this problem, we explore geomagnetic positioning in both the time and spatial domains concurrently. We propose a novel method named TSIG. In the temporal domain, we propose a multi-scale attention module with geomagnetic hierarchical embedding, named TIG. We first extract the temporal dependencies of geomagnetic subsequences at certain time scales from both local and global perspectives. Then, we use the extracted information to capture anomalies at different time scales and determine each scale’s contribution to the importance of features. In the spatial domain, we incorporate geomagnetic signal characteristics and propose a geomagnetic anomaly focusing and direction perception-driven feature extraction module named SIG. We reconstruct the geomagnetic sequences into images and further extract the spatial features using anomaly focusing and direction perception, thereby enhancing the representational capacity of the spatial features. Finally, the temporal and spatial domain features are input into the spatiotemporal feature fusion layer to achieve cross-domain feature fusion, generating the positioning result. The experimental results show that the proposed TSIG method can achieve accurate positioning.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"179 \",\"pages\":\"Article 104023\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870525002719\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525002719","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

许多使用传统或深度学习技术的地磁定位方法在室内定位方面取得了重大进展。然而,地磁不匹配仍然会导致定位精度出现较大误差。为了解决这一问题,我们在时间和空间两个领域同时探索地磁定位。我们提出了一种新的方法——TSIG。在时间域,我们提出了一种多尺度的地磁分层嵌入关注模块,称为TIG。我们首先从局部和全球两个角度提取了特定时间尺度地磁子序列的时间依赖性。然后,我们利用提取的信息捕获不同时间尺度的异常,并确定每个尺度对特征重要性的贡献。在空间域,结合地磁信号特征,提出了地磁异常聚焦和方向感知驱动的地磁特征提取模块SIG,将地磁序列重构成图像,利用异常聚焦和方向感知进一步提取空间特征,增强空间特征的表征能力。最后,将时域和空域特征输入到时空特征融合层中,实现跨域特征融合,生成定位结果。实验结果表明,所提出的TSIG方法能够实现精确定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TSIG: A geomagnetic indoor positioning method leveraging temporal and spatial domain features
Numerous methods for geomagnetic positioning, using traditional or deep learning techniques, have made significant strides in indoor positioning. Nevertheless, geomagnetic mismatching still leads to considerable errors in positioning accuracy. To address this problem, we explore geomagnetic positioning in both the time and spatial domains concurrently. We propose a novel method named TSIG. In the temporal domain, we propose a multi-scale attention module with geomagnetic hierarchical embedding, named TIG. We first extract the temporal dependencies of geomagnetic subsequences at certain time scales from both local and global perspectives. Then, we use the extracted information to capture anomalies at different time scales and determine each scale’s contribution to the importance of features. In the spatial domain, we incorporate geomagnetic signal characteristics and propose a geomagnetic anomaly focusing and direction perception-driven feature extraction module named SIG. We reconstruct the geomagnetic sequences into images and further extract the spatial features using anomaly focusing and direction perception, thereby enhancing the representational capacity of the spatial features. Finally, the temporal and spatial domain features are input into the spatiotemporal feature fusion layer to achieve cross-domain feature fusion, generating the positioning result. The experimental results show that the proposed TSIG method can achieve accurate positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信