Floquet系统中多体定位转换的分析:随机与准周期紊乱

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Longhui Shen, Mingxiang Gao, Xiuquan Yu, Bin Guo
{"title":"Floquet系统中多体定位转换的分析:随机与准周期紊乱","authors":"Longhui Shen,&nbsp;Mingxiang Gao,&nbsp;Xiuquan Yu,&nbsp;Bin Guo","doi":"10.1016/j.physb.2025.417780","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate many-body localization (MBL) phase transitions in Floquet-driven quantum systems, employing global quantum discord (GQD) to compare the stability and dynamics of MBL phases under random and quasi-periodic disorder. For a static Heisenberg spin-<span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> ladder, GQD reveals critical disorder strengths of <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>≈</mo><mn>9</mn><mo>.</mo><mn>5</mn></mrow></math></span> (random case) and <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>≈</mo><mn>8</mn><mo>.</mo><mn>5</mn></mrow></math></span> (quasi-periodic case), highlighting the greater stability of quasi-periodic disorder. In Floquet systems, high-frequency drives (<span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>20</mn></mrow></math></span>) suppress energy absorption, preserving MBL even in weakly disordered ergodic regimes, while low frequencies (<span><math><mrow><mi>ω</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>) or strong amplitudes promote thermalization. Quasi-periodic disorder exhibits superior resistance to thermalization, with higher critical driving amplitudes, attributed to robust internal correlations quantified by GQD. Variance analysis confirms the consistency of these critical points. Our findings clarify the distinct stabilization mechanisms of driving parameters in Floquet-MBL systems, while demonstrating quasi-periodic disorder’s inherent robustness against perturbations, offering guidance for the experimental realization of nonergodic quantum states.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417780"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of many-body localization transitions in Floquet systems: Random versus quasi-periodic disorder\",\"authors\":\"Longhui Shen,&nbsp;Mingxiang Gao,&nbsp;Xiuquan Yu,&nbsp;Bin Guo\",\"doi\":\"10.1016/j.physb.2025.417780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate many-body localization (MBL) phase transitions in Floquet-driven quantum systems, employing global quantum discord (GQD) to compare the stability and dynamics of MBL phases under random and quasi-periodic disorder. For a static Heisenberg spin-<span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> ladder, GQD reveals critical disorder strengths of <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>≈</mo><mn>9</mn><mo>.</mo><mn>5</mn></mrow></math></span> (random case) and <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>≈</mo><mn>8</mn><mo>.</mo><mn>5</mn></mrow></math></span> (quasi-periodic case), highlighting the greater stability of quasi-periodic disorder. In Floquet systems, high-frequency drives (<span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>20</mn></mrow></math></span>) suppress energy absorption, preserving MBL even in weakly disordered ergodic regimes, while low frequencies (<span><math><mrow><mi>ω</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>) or strong amplitudes promote thermalization. Quasi-periodic disorder exhibits superior resistance to thermalization, with higher critical driving amplitudes, attributed to robust internal correlations quantified by GQD. Variance analysis confirms the consistency of these critical points. Our findings clarify the distinct stabilization mechanisms of driving parameters in Floquet-MBL systems, while demonstrating quasi-periodic disorder’s inherent robustness against perturbations, offering guidance for the experimental realization of nonergodic quantum states.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417780\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092145262500897X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500897X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

研究了floquet驱动量子系统中多体局部化(MBL)相变,采用全局量子不和谐(GQD)来比较随机和准周期无序下MBL相的稳定性和动力学。对于静态Heisenberg自旋-1/2阶梯,GQD显示出Wc≈9.5(随机情况)和Wc≈8.5(准周期情况)的临界无序强度,表明准周期无序具有更大的稳定性。在Floquet系统中,高频驱动(ω>20)抑制能量吸收,即使在弱无序遍历状态下也能保持MBL,而低频(ω<2)或强振幅促进热化。准周期无序表现出优越的耐热性,具有更高的临界驱动幅值,归因于由GQD量化的鲁棒内部相关性。方差分析证实了这些临界点的一致性。我们的研究结果阐明了Floquet-MBL系统中驱动参数的独特稳定机制,同时证明了准周期无序对扰动的固有鲁棒性,为非遍历量子态的实验实现提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of many-body localization transitions in Floquet systems: Random versus quasi-periodic disorder
We investigate many-body localization (MBL) phase transitions in Floquet-driven quantum systems, employing global quantum discord (GQD) to compare the stability and dynamics of MBL phases under random and quasi-periodic disorder. For a static Heisenberg spin-1/2 ladder, GQD reveals critical disorder strengths of Wc9.5 (random case) and Wc8.5 (quasi-periodic case), highlighting the greater stability of quasi-periodic disorder. In Floquet systems, high-frequency drives (ω>20) suppress energy absorption, preserving MBL even in weakly disordered ergodic regimes, while low frequencies (ω<2) or strong amplitudes promote thermalization. Quasi-periodic disorder exhibits superior resistance to thermalization, with higher critical driving amplitudes, attributed to robust internal correlations quantified by GQD. Variance analysis confirms the consistency of these critical points. Our findings clarify the distinct stabilization mechanisms of driving parameters in Floquet-MBL systems, while demonstrating quasi-periodic disorder’s inherent robustness against perturbations, offering guidance for the experimental realization of nonergodic quantum states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信