Ag/Al/SiO2/n-Si/Ag异质结构的界面工程和介电可调性:电阻性记忆和高κ电子学的新见解

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
A. Ashery
{"title":"Ag/Al/SiO2/n-Si/Ag异质结构的界面工程和介电可调性:电阻性记忆和高κ电子学的新见解","authors":"A. Ashery","doi":"10.1016/j.physb.2025.417758","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive investigation of the dielectric and electrical properties of Ag/Al/SiO<sub>2</sub>/n-Si/Ag heterostructures using impedance spectroscopy, modulus formalism, and temperature-dependent current-voltage (I-V) analysis. The incorporation of an Al interlayer between Ag and SiO<sub>2</sub> introduces unique interfacial effects, modifying charge transport dynamics, dielectric relaxation, and barrier height distribution. Key findings include: Frequency- and voltage-dependent dielectric relaxation, revealing Maxwell-Wagner polarization and interfacial trap effects, with non-Debye behavior due to distributed relaxation times. Temperature-activated conduction mechanisms, including thermionic emission, hopping transport, and space-charge-limited conduction (SCLC), influenced by SiO<sub>2</sub> thickness and defect states.AC conductivity analysis following Jonscher's power law, with distinct low-frequency (ohmic) and high-frequency (dispersive) regimes. Barrier height inhomogeneity, extracted via modified Richardson plots, showing a Gaussian distribution of Schottky barriers due to interfacial disorder. Novelty: Unlike conventional MOS structures, the dual-metal (Ag/Al) electrode enhances interfacial dipoles and modifies charge injection, while the SiO<sub>2</sub>/n-Si interface governs dielectric losses and capacitive memory effects. This work bridges the gap between organic-inorganic hybrid dielectrics and traditional SiO<sub>2</sub>-based devices, offering insights into defect engineering for tunable dielectric response. Potential Applications.</div><div>Non-volatile resistive memory (RRAM) – Exploiting voltage-dependent dielectric relaxation for low-power neuromorphic computing. High-κ gate dielectrics – Optimizing SiO<sub>2</sub> thickness for reduced leakage currents in MOSFETs. Flexible electronics – Hybridizing with polymer composites (e.g., P3HT:PCBM) for stretchable capacitive sensors. Thermal/voltage sensors – Utilizing tanδ and modulus dispersion for environmental sensing applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417758"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial engineering and dielectric tunability in Ag/Al/SiO2/n-Si/Ag heterostructures: Novel insights for resistive memory and high-κ electronics\",\"authors\":\"A. Ashery\",\"doi\":\"10.1016/j.physb.2025.417758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive investigation of the dielectric and electrical properties of Ag/Al/SiO<sub>2</sub>/n-Si/Ag heterostructures using impedance spectroscopy, modulus formalism, and temperature-dependent current-voltage (I-V) analysis. The incorporation of an Al interlayer between Ag and SiO<sub>2</sub> introduces unique interfacial effects, modifying charge transport dynamics, dielectric relaxation, and barrier height distribution. Key findings include: Frequency- and voltage-dependent dielectric relaxation, revealing Maxwell-Wagner polarization and interfacial trap effects, with non-Debye behavior due to distributed relaxation times. Temperature-activated conduction mechanisms, including thermionic emission, hopping transport, and space-charge-limited conduction (SCLC), influenced by SiO<sub>2</sub> thickness and defect states.AC conductivity analysis following Jonscher's power law, with distinct low-frequency (ohmic) and high-frequency (dispersive) regimes. Barrier height inhomogeneity, extracted via modified Richardson plots, showing a Gaussian distribution of Schottky barriers due to interfacial disorder. Novelty: Unlike conventional MOS structures, the dual-metal (Ag/Al) electrode enhances interfacial dipoles and modifies charge injection, while the SiO<sub>2</sub>/n-Si interface governs dielectric losses and capacitive memory effects. This work bridges the gap between organic-inorganic hybrid dielectrics and traditional SiO<sub>2</sub>-based devices, offering insights into defect engineering for tunable dielectric response. Potential Applications.</div><div>Non-volatile resistive memory (RRAM) – Exploiting voltage-dependent dielectric relaxation for low-power neuromorphic computing. High-κ gate dielectrics – Optimizing SiO<sub>2</sub> thickness for reduced leakage currents in MOSFETs. Flexible electronics – Hybridizing with polymer composites (e.g., P3HT:PCBM) for stretchable capacitive sensors. Thermal/voltage sensors – Utilizing tanδ and modulus dispersion for environmental sensing applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417758\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625008750\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008750","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用阻抗谱、模量形式和温度相关的电流-电压(I-V)分析对Ag/Al/SiO2/n-Si/Ag异质结构的介电性能和电学性能进行了全面的研究。Ag和SiO2之间Al中间层的掺入引入了独特的界面效应,改变了电荷输运动力学、介电弛豫和势垒高度分布。主要发现包括:频率和电压相关的介电弛豫,揭示了麦克斯韦-瓦格纳极化和界面陷阱效应,由于分布弛豫时间,具有非德拜行为。温度激活的传导机制,包括热离子发射、跳跃输运和空间电荷限制传导(SCLC),受SiO2厚度和缺陷状态的影响。交流电导率分析遵循Jonscher幂定律,具有明显的低频(欧姆)和高频(色散)制度。通过改进的Richardson图提取的势垒高度不均匀性表明,由于界面无序,肖特基势垒呈高斯分布。新颖之处:与传统的MOS结构不同,双金属(Ag/Al)电极增强了界面偶极子并改变了电荷注入,而SiO2/n-Si界面控制了介电损耗和电容记忆效应。这项工作弥补了有机-无机混合电介质和传统的基于sio2的器件之间的差距,为可调谐电介质响应的缺陷工程提供了见解。潜在的应用。非易失性电阻存储器(RRAM) -利用电压相关的介电弛豫用于低功耗神经形态计算。高κ栅极电介质-优化SiO2厚度,降低mosfet的漏电流。柔性电子-与聚合物复合材料(如P3HT:PCBM)杂交,用于可拉伸电容传感器。热/电压传感器。利用tanδ和模量色散用于环境传感应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial engineering and dielectric tunability in Ag/Al/SiO2/n-Si/Ag heterostructures: Novel insights for resistive memory and high-κ electronics
This study presents a comprehensive investigation of the dielectric and electrical properties of Ag/Al/SiO2/n-Si/Ag heterostructures using impedance spectroscopy, modulus formalism, and temperature-dependent current-voltage (I-V) analysis. The incorporation of an Al interlayer between Ag and SiO2 introduces unique interfacial effects, modifying charge transport dynamics, dielectric relaxation, and barrier height distribution. Key findings include: Frequency- and voltage-dependent dielectric relaxation, revealing Maxwell-Wagner polarization and interfacial trap effects, with non-Debye behavior due to distributed relaxation times. Temperature-activated conduction mechanisms, including thermionic emission, hopping transport, and space-charge-limited conduction (SCLC), influenced by SiO2 thickness and defect states.AC conductivity analysis following Jonscher's power law, with distinct low-frequency (ohmic) and high-frequency (dispersive) regimes. Barrier height inhomogeneity, extracted via modified Richardson plots, showing a Gaussian distribution of Schottky barriers due to interfacial disorder. Novelty: Unlike conventional MOS structures, the dual-metal (Ag/Al) electrode enhances interfacial dipoles and modifies charge injection, while the SiO2/n-Si interface governs dielectric losses and capacitive memory effects. This work bridges the gap between organic-inorganic hybrid dielectrics and traditional SiO2-based devices, offering insights into defect engineering for tunable dielectric response. Potential Applications.
Non-volatile resistive memory (RRAM) – Exploiting voltage-dependent dielectric relaxation for low-power neuromorphic computing. High-κ gate dielectrics – Optimizing SiO2 thickness for reduced leakage currents in MOSFETs. Flexible electronics – Hybridizing with polymer composites (e.g., P3HT:PCBM) for stretchable capacitive sensors. Thermal/voltage sensors – Utilizing tanδ and modulus dispersion for environmental sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信