Wen-Liang Hao , De-Zhi Geng , Yu-Feng Liu , Lai-Chuang Han , Zhe-Min Zhou , Wen-Jing Cui
{"title":"MicroDFBEST:一种dcas12b衍生的双功能碱基编辑器,具有可编程编辑特性,用于微生物基因工程","authors":"Wen-Liang Hao , De-Zhi Geng , Yu-Feng Liu , Lai-Chuang Han , Zhe-Min Zhou , Wen-Jing Cui","doi":"10.1016/j.synbio.2025.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>Base editors (BEs) enable precise genome editing, but their use in microbes remains limited by restricted mutagenesis capabilities and narrow editing windows. Here, we reported MicroDFBEST, a novel dual-function base editor (DFBE) for microbes, by fusing the high-activity deaminases evoCDA1 and TadA9 with nuclease-deficient Cas12b from <em>Bacillus hisashii</em> (dBhCas12b). This engineered system enables simultaneous C-to-T and A-to-G editing within a 26–33 nt window, the broadest range reported for microbial DFBEs. The editing characteristics of MicroDFBEST can be easily adjusted by changing fusion protein expression and editing generations to create diverse mutant libraries. We show that the MicroDFBEST system enables both flexible gene expression modulation via random promoter (P<sub><em>ylbP</em></sub>) diversification and targeted protein evolution through mutational hotspot scanning in native genomic contexts. This study offers a versatile platform enabling in situ gene regulation (e.g., biosynthetic gene clusters activation) and protein evolution (e.g., chassis optimization), with broad synthetic biology utility.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"11 ","pages":"Pages 161-171"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroDFBEST: A dCas12b-derived dual-function base editor with programmable editing characteristics for microbial genetic engineering\",\"authors\":\"Wen-Liang Hao , De-Zhi Geng , Yu-Feng Liu , Lai-Chuang Han , Zhe-Min Zhou , Wen-Jing Cui\",\"doi\":\"10.1016/j.synbio.2025.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Base editors (BEs) enable precise genome editing, but their use in microbes remains limited by restricted mutagenesis capabilities and narrow editing windows. Here, we reported MicroDFBEST, a novel dual-function base editor (DFBE) for microbes, by fusing the high-activity deaminases evoCDA1 and TadA9 with nuclease-deficient Cas12b from <em>Bacillus hisashii</em> (dBhCas12b). This engineered system enables simultaneous C-to-T and A-to-G editing within a 26–33 nt window, the broadest range reported for microbial DFBEs. The editing characteristics of MicroDFBEST can be easily adjusted by changing fusion protein expression and editing generations to create diverse mutant libraries. We show that the MicroDFBEST system enables both flexible gene expression modulation via random promoter (P<sub><em>ylbP</em></sub>) diversification and targeted protein evolution through mutational hotspot scanning in native genomic contexts. This study offers a versatile platform enabling in situ gene regulation (e.g., biosynthetic gene clusters activation) and protein evolution (e.g., chassis optimization), with broad synthetic biology utility.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"11 \",\"pages\":\"Pages 161-171\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X25001541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25001541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
MicroDFBEST: A dCas12b-derived dual-function base editor with programmable editing characteristics for microbial genetic engineering
Base editors (BEs) enable precise genome editing, but their use in microbes remains limited by restricted mutagenesis capabilities and narrow editing windows. Here, we reported MicroDFBEST, a novel dual-function base editor (DFBE) for microbes, by fusing the high-activity deaminases evoCDA1 and TadA9 with nuclease-deficient Cas12b from Bacillus hisashii (dBhCas12b). This engineered system enables simultaneous C-to-T and A-to-G editing within a 26–33 nt window, the broadest range reported for microbial DFBEs. The editing characteristics of MicroDFBEST can be easily adjusted by changing fusion protein expression and editing generations to create diverse mutant libraries. We show that the MicroDFBEST system enables both flexible gene expression modulation via random promoter (PylbP) diversification and targeted protein evolution through mutational hotspot scanning in native genomic contexts. This study offers a versatile platform enabling in situ gene regulation (e.g., biosynthetic gene clusters activation) and protein evolution (e.g., chassis optimization), with broad synthetic biology utility.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.