固体火箭发动机点火瞬态性能的点火器设计参数化研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Junjie Wang , Yinping Ma , Limin Wang , Linqing Zhang , Yongliang Xiong
{"title":"固体火箭发动机点火瞬态性能的点火器设计参数化研究","authors":"Junjie Wang ,&nbsp;Yinping Ma ,&nbsp;Limin Wang ,&nbsp;Linqing Zhang ,&nbsp;Yongliang Xiong","doi":"10.1016/j.ijthermalsci.2025.110322","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of igniter performance parameters and jet orientation on three ignition transient phases (induction, flame spreading, chamber filling) in solid rocket motors. A three-dimensional fluid dynamics model coupled with one-dimensional unsteady heat transfer captures ignition combustion transients. Key findings reveal that induction time decreases significantly with higher igniter heat flux and larger jet canting angles. Flame spreading time exhibits an inverse relationship with induction time, while maximum pressure rise rate inversely correlates with flame spreading time. Chamber filling time is only affected in canted configurations, showing an inverse relationship with flame spreading time. Increasing jet canting angle prolongs flame spreading time and reduces pressure rise rate, but diminishing returns beyond ∼75° provide practical design constraints. These insights offer quantitative guidance for precision igniter design.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110322"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric study of igniter design on ignition transient performance in solid rocket motors\",\"authors\":\"Junjie Wang ,&nbsp;Yinping Ma ,&nbsp;Limin Wang ,&nbsp;Linqing Zhang ,&nbsp;Yongliang Xiong\",\"doi\":\"10.1016/j.ijthermalsci.2025.110322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of igniter performance parameters and jet orientation on three ignition transient phases (induction, flame spreading, chamber filling) in solid rocket motors. A three-dimensional fluid dynamics model coupled with one-dimensional unsteady heat transfer captures ignition combustion transients. Key findings reveal that induction time decreases significantly with higher igniter heat flux and larger jet canting angles. Flame spreading time exhibits an inverse relationship with induction time, while maximum pressure rise rate inversely correlates with flame spreading time. Chamber filling time is only affected in canted configurations, showing an inverse relationship with flame spreading time. Increasing jet canting angle prolongs flame spreading time and reduces pressure rise rate, but diminishing returns beyond ∼75° provide practical design constraints. These insights offer quantitative guidance for precision igniter design.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"220 \",\"pages\":\"Article 110322\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925006453\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925006453","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了固体火箭发动机点火性能参数和射流方向对感应、火焰蔓延、燃烧室填充三个点火瞬态阶段的影响。三维流体动力学模型与一维非定常传热相结合,捕捉了点火燃烧瞬态。结果表明:随着点火器热流密度的增大和射流倾斜角的增大,感应时间显著缩短。火焰蔓延时间与感应时间呈反比关系,最大压力上升速率与火焰蔓延时间呈反比关系。燃烧室填充时间仅在倾斜构型下受影响,与火焰蔓延时间呈反比关系。增加喷射倾斜角度可以延长火焰传播时间并降低压力上升速率,但超过~ 75°后的递减回报提供了实际的设计限制。这些见解为精密点火器设计提供了定量指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric study of igniter design on ignition transient performance in solid rocket motors
This study investigates the influence of igniter performance parameters and jet orientation on three ignition transient phases (induction, flame spreading, chamber filling) in solid rocket motors. A three-dimensional fluid dynamics model coupled with one-dimensional unsteady heat transfer captures ignition combustion transients. Key findings reveal that induction time decreases significantly with higher igniter heat flux and larger jet canting angles. Flame spreading time exhibits an inverse relationship with induction time, while maximum pressure rise rate inversely correlates with flame spreading time. Chamber filling time is only affected in canted configurations, showing an inverse relationship with flame spreading time. Increasing jet canting angle prolongs flame spreading time and reduces pressure rise rate, but diminishing returns beyond ∼75° provide practical design constraints. These insights offer quantitative guidance for precision igniter design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信