通过深度学习测量名字的浓度

IF 9.8 1区 经济学 Q1 BUSINESS, FINANCE
Eva Lütkebohmert , Julian Sester
{"title":"通过深度学习测量名字的浓度","authors":"Eva Lütkebohmert ,&nbsp;Julian Sester","doi":"10.1016/j.irfa.2025.104598","DOIUrl":null,"url":null,"abstract":"<div><div>We suggest a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark-to-market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk + and the ratings-based CreditMetrics model. Numerical results based on simulated as well as real data demonstrate the accuracy of our new approach and its superior performance compared to existing analytical methods for assessing name concentration risk in small and concentrated portfolios.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"107 ","pages":"Article 104598"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring name concentrations through deep learning\",\"authors\":\"Eva Lütkebohmert ,&nbsp;Julian Sester\",\"doi\":\"10.1016/j.irfa.2025.104598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We suggest a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark-to-market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk + and the ratings-based CreditMetrics model. Numerical results based on simulated as well as real data demonstrate the accuracy of our new approach and its superior performance compared to existing analytical methods for assessing name concentration risk in small and concentrated portfolios.</div></div>\",\"PeriodicalId\":48226,\"journal\":{\"name\":\"International Review of Financial Analysis\",\"volume\":\"107 \",\"pages\":\"Article 104598\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Financial Analysis\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1057521925006854\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521925006854","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的深度学习方法来量化贷款组合中的名称集中风险。我们的方法是为小型投资组合量身定制的,并允许精算和按市值计价的损失定义。我们的神经网络的训练依赖于蒙特卡罗模拟的重要性采样,我们明确地为CreditRisk +和基于评级的CreditMetrics模型制定了重要采样。基于模拟数据和实际数据的数值结果表明,该方法在评估小型和集中投资组合中的名称集中风险方面具有较好的准确性和较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring name concentrations through deep learning
We suggest a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark-to-market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk + and the ratings-based CreditMetrics model. Numerical results based on simulated as well as real data demonstrate the accuracy of our new approach and its superior performance compared to existing analytical methods for assessing name concentration risk in small and concentrated portfolios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信