非pgm聚合物电解质膜燃料电池的三维建模与实验验证

IF 17 1区 工程技术 Q1 ENERGY & FUELS
Yiheng Pang , Rui Gao , Yujiang Song , Hui Xu , Yun Wang
{"title":"非pgm聚合物电解质膜燃料电池的三维建模与实验验证","authors":"Yiheng Pang ,&nbsp;Rui Gao ,&nbsp;Yujiang Song ,&nbsp;Hui Xu ,&nbsp;Yun Wang","doi":"10.1016/j.etran.2025.100479","DOIUrl":null,"url":null,"abstract":"<div><div>High catalyst cost impedes PEM fuel cell (PEMFC) commercialization, making the development of high-performance non-platinum(Pt) group metal (PGM) cathode catalyst layers (CLs) critical for advancing fuel cell technology. CLs contribute to a major portion of PEMFCs cost due to the use of PGM catalysts. To reduce the cost, non-PGM catalysts offer a viable alternative to low-Pt loading. In this study, we develop a three-dimensional (3-D) model to investigate the reaction rate, oxygen, and liquid water distributions in PEMFCs with a focus on the non-PGM cathode catalyst layer, which provides unique insights into electrochemically coupled transport processes that cannot be resolved by reduced-dimension or experimental approaches. Experiments were conducted using two types of non-PGM catalysts, including Fe-N-C and Mn-N-C based materials, to validate the 3-D model predictions. It is shown that CL properties such as catalyst materials, porosity, and ionomer content can play important roles in PEMFCs voltage gain, highlighting the performance impact of non-PGM catalysts. Large variations in the liquid water and oxygen contents occur in the gas diffusion layer from the land to channel under 1 A/cm<sup>2</sup>. The through-plane distributions under the channel show large spatial variations across the non-PGM CLs in oxygen and the electrolyte phase potential. Liquid water shows little change across the catalyst layer based on the 3-D model prediction. These findings advance PEMFC development by informing the design of durable, high-performance non-PGM CLs to reduce fuel cell cost for transportation applications.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"26 ","pages":"Article 100479"},"PeriodicalIF":17.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional modeling with experimental validation of non-PGM polymer electrolyte membrane fuel cells\",\"authors\":\"Yiheng Pang ,&nbsp;Rui Gao ,&nbsp;Yujiang Song ,&nbsp;Hui Xu ,&nbsp;Yun Wang\",\"doi\":\"10.1016/j.etran.2025.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High catalyst cost impedes PEM fuel cell (PEMFC) commercialization, making the development of high-performance non-platinum(Pt) group metal (PGM) cathode catalyst layers (CLs) critical for advancing fuel cell technology. CLs contribute to a major portion of PEMFCs cost due to the use of PGM catalysts. To reduce the cost, non-PGM catalysts offer a viable alternative to low-Pt loading. In this study, we develop a three-dimensional (3-D) model to investigate the reaction rate, oxygen, and liquid water distributions in PEMFCs with a focus on the non-PGM cathode catalyst layer, which provides unique insights into electrochemically coupled transport processes that cannot be resolved by reduced-dimension or experimental approaches. Experiments were conducted using two types of non-PGM catalysts, including Fe-N-C and Mn-N-C based materials, to validate the 3-D model predictions. It is shown that CL properties such as catalyst materials, porosity, and ionomer content can play important roles in PEMFCs voltage gain, highlighting the performance impact of non-PGM catalysts. Large variations in the liquid water and oxygen contents occur in the gas diffusion layer from the land to channel under 1 A/cm<sup>2</sup>. The through-plane distributions under the channel show large spatial variations across the non-PGM CLs in oxygen and the electrolyte phase potential. Liquid water shows little change across the catalyst layer based on the 3-D model prediction. These findings advance PEMFC development by informing the design of durable, high-performance non-PGM CLs to reduce fuel cell cost for transportation applications.</div></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"26 \",\"pages\":\"Article 100479\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116825000864\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000864","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高昂的催化剂成本阻碍了PEM燃料电池(PEMFC)的商业化,因此开发高性能的非铂族金属(Pt)阴极催化剂层(CLs)对于推进燃料电池技术至关重要。由于使用了PGM催化剂,CLs占了pemfc成本的很大一部分。为了降低成本,非pgm催化剂为低铂负载提供了可行的替代方案。在这项研究中,我们开发了一个三维(3-D)模型来研究pemfc中的反应速率、氧和液态水分布,重点研究了非pgm阴极催化剂层,这为电化学耦合输运过程提供了独特的见解,这些过程无法通过降维或实验方法来解决。实验使用了两种非pgm催化剂,包括Fe-N-C和Mn-N-C基材料,以验证三维模型的预测。结果表明,催化剂材料、孔隙度和离聚体含量等CL性质对pemfc的电压增益有重要影响,突出了非pgm催化剂对性能的影响。液态水和氧含量在1 A/cm2以下从陆地到通道的气体扩散层中发生较大变化。通道下的通平面分布在氧和电解质相电位中显示出较大的空间差异。根据三维模型预测,液态水在催化剂层上的变化不大。这些发现推动了PEMFC的发展,为设计耐用、高性能的非pgm CLs提供了信息,从而降低了运输应用中燃料电池的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional modeling with experimental validation of non-PGM polymer electrolyte membrane fuel cells
High catalyst cost impedes PEM fuel cell (PEMFC) commercialization, making the development of high-performance non-platinum(Pt) group metal (PGM) cathode catalyst layers (CLs) critical for advancing fuel cell technology. CLs contribute to a major portion of PEMFCs cost due to the use of PGM catalysts. To reduce the cost, non-PGM catalysts offer a viable alternative to low-Pt loading. In this study, we develop a three-dimensional (3-D) model to investigate the reaction rate, oxygen, and liquid water distributions in PEMFCs with a focus on the non-PGM cathode catalyst layer, which provides unique insights into electrochemically coupled transport processes that cannot be resolved by reduced-dimension or experimental approaches. Experiments were conducted using two types of non-PGM catalysts, including Fe-N-C and Mn-N-C based materials, to validate the 3-D model predictions. It is shown that CL properties such as catalyst materials, porosity, and ionomer content can play important roles in PEMFCs voltage gain, highlighting the performance impact of non-PGM catalysts. Large variations in the liquid water and oxygen contents occur in the gas diffusion layer from the land to channel under 1 A/cm2. The through-plane distributions under the channel show large spatial variations across the non-PGM CLs in oxygen and the electrolyte phase potential. Liquid water shows little change across the catalyst layer based on the 3-D model prediction. These findings advance PEMFC development by informing the design of durable, high-performance non-PGM CLs to reduce fuel cell cost for transportation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信