Guilin He, Min Lei, Lei Han, Peifa Shan, Ruipeng Chen
{"title":"通过动态数字孪生模型和深度学习实现节能智能电网运行","authors":"Guilin He, Min Lei, Lei Han, Peifa Shan, Ruipeng Chen","doi":"10.1016/j.suscom.2025.101200","DOIUrl":null,"url":null,"abstract":"<div><div>Adopting the dynamic digital twin (DDT) model in smart grid distribution networks is a revolutionary breakthrough toward advanced dynamic energy management and control. However, even the most advanced systems fail to describe static architectural configuration adequately or they do not offer sufficient automation in this process, they are unable to handle dynamic interactions or topological hierarchy. To overcome such restrictions, this research presents a new framework for building DDT models based on Graph Neural Networks (GNNs). GNNs outperform other deep learning models when it comes to modeling graph-structured data which has application in modeling nodes and edges of smart grids. The adopted model expands the critical technical parameters' achievements and indicates a high Voltage Regulation Efficiency of 92 % and Network Efficiency belonging to 95 %; therefore, the distribution of power and operation reliability is considered optimal. The advantage of these findings is also echoed by the Voltage Profile Deviation of 0.015 p.u. and the Power Loss Reduction of 18.3 % which suggest that the proposed method offers better voltage profile stability and less energy losses than existing static models. The usefulness and applicability of the framework can be shown by performing experiments in MATLAB Simulink and Python-based libraries such as PyTorch Geometric. This study provides a novel approach to address issues in applied research and provides the basis for further advancements in realistic digital twin applications concerning smart grids.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101200"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient smart grid operations through dynamic digital twin models and deep learning\",\"authors\":\"Guilin He, Min Lei, Lei Han, Peifa Shan, Ruipeng Chen\",\"doi\":\"10.1016/j.suscom.2025.101200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adopting the dynamic digital twin (DDT) model in smart grid distribution networks is a revolutionary breakthrough toward advanced dynamic energy management and control. However, even the most advanced systems fail to describe static architectural configuration adequately or they do not offer sufficient automation in this process, they are unable to handle dynamic interactions or topological hierarchy. To overcome such restrictions, this research presents a new framework for building DDT models based on Graph Neural Networks (GNNs). GNNs outperform other deep learning models when it comes to modeling graph-structured data which has application in modeling nodes and edges of smart grids. The adopted model expands the critical technical parameters' achievements and indicates a high Voltage Regulation Efficiency of 92 % and Network Efficiency belonging to 95 %; therefore, the distribution of power and operation reliability is considered optimal. The advantage of these findings is also echoed by the Voltage Profile Deviation of 0.015 p.u. and the Power Loss Reduction of 18.3 % which suggest that the proposed method offers better voltage profile stability and less energy losses than existing static models. The usefulness and applicability of the framework can be shown by performing experiments in MATLAB Simulink and Python-based libraries such as PyTorch Geometric. This study provides a novel approach to address issues in applied research and provides the basis for further advancements in realistic digital twin applications concerning smart grids.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"48 \",\"pages\":\"Article 101200\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925001210\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001210","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Energy-efficient smart grid operations through dynamic digital twin models and deep learning
Adopting the dynamic digital twin (DDT) model in smart grid distribution networks is a revolutionary breakthrough toward advanced dynamic energy management and control. However, even the most advanced systems fail to describe static architectural configuration adequately or they do not offer sufficient automation in this process, they are unable to handle dynamic interactions or topological hierarchy. To overcome such restrictions, this research presents a new framework for building DDT models based on Graph Neural Networks (GNNs). GNNs outperform other deep learning models when it comes to modeling graph-structured data which has application in modeling nodes and edges of smart grids. The adopted model expands the critical technical parameters' achievements and indicates a high Voltage Regulation Efficiency of 92 % and Network Efficiency belonging to 95 %; therefore, the distribution of power and operation reliability is considered optimal. The advantage of these findings is also echoed by the Voltage Profile Deviation of 0.015 p.u. and the Power Loss Reduction of 18.3 % which suggest that the proposed method offers better voltage profile stability and less energy losses than existing static models. The usefulness and applicability of the framework can be shown by performing experiments in MATLAB Simulink and Python-based libraries such as PyTorch Geometric. This study provides a novel approach to address issues in applied research and provides the basis for further advancements in realistic digital twin applications concerning smart grids.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.