二氧化碳捕集中气液反应沉淀喷雾塔的可行性评价

Robert Kiefel , Jonas Görtz , Jan Haß , Julius Walorski , Falk Zimmer , Andreas Jupke
{"title":"二氧化碳捕集中气液反应沉淀喷雾塔的可行性评价","authors":"Robert Kiefel ,&nbsp;Jonas Görtz ,&nbsp;Jan Haß ,&nbsp;Julius Walorski ,&nbsp;Falk Zimmer ,&nbsp;Andreas Jupke","doi":"10.1016/j.ccst.2025.100509","DOIUrl":null,"url":null,"abstract":"<div><div>The industrial deployment of <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture technologies for purifying gases with low <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> partial pressure (e.g., flue gas) has been limited due to substantial economic hurdles. Process intensification offers a pathway to enhance the cost efficiency of <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> sequestration. One approach that has garnered significant attention is the process integration of phase-change absorbents. Among these, bis(iminoguanidines) have shown considerable promise in recent literature. Particularly, glyoxal-bis(iminoguanidine) (GBIG) has demonstrated the ability to precipitate <span><math><msubsup><mrow><mi>HCO</mi></mrow><mrow><mn>3</mn></mrow><mo>−</mo></msubsup></math></span> with low regeneration energy demand. However, GBIG and comparable phase-change absorbents require the integration of alkaline scrubbing with reactive precipitation in a single unit operation (gas-liquid reactive precipitation), introducing operational challenges such as scaling and clogging in conventionally applied packed-bed columns. To mitigate these issues, this study investigates the use of a spray tower as a gas-liquid reactive precipitator for <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture from a flue gas surrogate. A pilot-scale spray tower is designed, constructed, and operated. Contrary to expectations, Rayleigh breakup of liquid jets induces a bimodal droplet size distribution in the lower sections of the tower, indicating limited scalability and highlighting the need for liquid recycling. For comparative purposes, the investigation includes a <span><math><msubsup><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></math></span>-precipitating system (<span><math><msub><mrow><mi>Ba</mi><mo>(</mo><mtext>OH</mtext><mo>)</mo></mrow><mn>2</mn></msub></math></span>) and a non-precipitating system (<span><math><mrow><mi>NaOH</mi></mrow></math></span>), alongside GBIG. All systems demonstrate stable operability in single-pass and batch modes. During liquid recycling, small amounts of solids are entrained to the tower top. Nevertheless, no evidence of scaling or clogging is detected at the orifice plate, suggesting that the precipitated solids are significantly smaller than the orifice diameter. In the final performance comparison, the <span><math><mrow><mi>GBIG</mi></mrow></math></span> system demonstrates superior <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture efficiency relative to the <span><math><msub><mrow><mi>Ba</mi><mo>(</mo><mtext>OH</mtext><mo>)</mo></mrow><mn>2</mn></msub></math></span> system. However, achieving this efficiency comes at the expense of process kinetics.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100509"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility assessment of a spray tower for gas-liquid reactive precipitation in CO2 capture\",\"authors\":\"Robert Kiefel ,&nbsp;Jonas Görtz ,&nbsp;Jan Haß ,&nbsp;Julius Walorski ,&nbsp;Falk Zimmer ,&nbsp;Andreas Jupke\",\"doi\":\"10.1016/j.ccst.2025.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The industrial deployment of <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture technologies for purifying gases with low <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> partial pressure (e.g., flue gas) has been limited due to substantial economic hurdles. Process intensification offers a pathway to enhance the cost efficiency of <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> sequestration. One approach that has garnered significant attention is the process integration of phase-change absorbents. Among these, bis(iminoguanidines) have shown considerable promise in recent literature. Particularly, glyoxal-bis(iminoguanidine) (GBIG) has demonstrated the ability to precipitate <span><math><msubsup><mrow><mi>HCO</mi></mrow><mrow><mn>3</mn></mrow><mo>−</mo></msubsup></math></span> with low regeneration energy demand. However, GBIG and comparable phase-change absorbents require the integration of alkaline scrubbing with reactive precipitation in a single unit operation (gas-liquid reactive precipitation), introducing operational challenges such as scaling and clogging in conventionally applied packed-bed columns. To mitigate these issues, this study investigates the use of a spray tower as a gas-liquid reactive precipitator for <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture from a flue gas surrogate. A pilot-scale spray tower is designed, constructed, and operated. Contrary to expectations, Rayleigh breakup of liquid jets induces a bimodal droplet size distribution in the lower sections of the tower, indicating limited scalability and highlighting the need for liquid recycling. For comparative purposes, the investigation includes a <span><math><msubsup><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></math></span>-precipitating system (<span><math><msub><mrow><mi>Ba</mi><mo>(</mo><mtext>OH</mtext><mo>)</mo></mrow><mn>2</mn></msub></math></span>) and a non-precipitating system (<span><math><mrow><mi>NaOH</mi></mrow></math></span>), alongside GBIG. All systems demonstrate stable operability in single-pass and batch modes. During liquid recycling, small amounts of solids are entrained to the tower top. Nevertheless, no evidence of scaling or clogging is detected at the orifice plate, suggesting that the precipitated solids are significantly smaller than the orifice diameter. In the final performance comparison, the <span><math><mrow><mi>GBIG</mi></mrow></math></span> system demonstrates superior <span><math><msub><mrow><mrow><mi>C</mi></mrow><mi>O</mi></mrow><mn>2</mn></msub></math></span> capture efficiency relative to the <span><math><msub><mrow><mi>Ba</mi><mo>(</mo><mtext>OH</mtext><mo>)</mo></mrow><mn>2</mn></msub></math></span> system. However, achieving this efficiency comes at the expense of process kinetics.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"17 \",\"pages\":\"Article 100509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于巨大的经济障碍,用于净化低二氧化碳分压气体(例如烟道气)的二氧化碳捕集技术的工业部署受到限制。过程强化为提高二氧化碳封存的成本效益提供了一条途径。相变吸收剂的工艺集成是一种引起广泛关注的方法。其中,亚氨基胍类化合物在最近的文献中显示出相当大的前景。特别是,乙二醛-双亚氨基胍(GBIG)已经证明了以低再生能量需求沉淀HCO3−的能力。然而,GBIG和类似的相变吸收剂需要在单个单元操作(气液反应性沉淀)中集成碱性洗涤和反应性沉淀,这给常规应用的填料床塔带来了结垢和堵塞等操作挑战。为了缓解这些问题,本研究调查了喷雾塔作为气液反应性沉淀器的使用,用于从烟气替代品中捕获二氧化碳。设计、建造并运行了一个中试规模的喷雾塔。与预期相反,液体射流的瑞利分解在塔的下部引起了双峰液滴尺寸分布,这表明可扩展性有限,并且突出了液体回收的必要性。为了比较起见,研究包括CO32−沉淀系统(Ba(OH)2)和非沉淀系统(NaOH),以及GBIG。所有系统在单通道和批处理模式下都具有稳定的可操作性。在液体回收过程中,少量固体被带到塔顶。然而,在孔板处没有检测到结垢或堵塞的证据,这表明沉淀的固体明显小于孔直径。在最后的性能比较中,GBIG系统相对于Ba(OH)2系统显示出更高的CO2捕获效率。然而,实现这种效率是以过程动力学为代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feasibility assessment of a spray tower for gas-liquid reactive precipitation in CO2 capture

Feasibility assessment of a spray tower for gas-liquid reactive precipitation in CO2 capture
The industrial deployment of CO2 capture technologies for purifying gases with low CO2 partial pressure (e.g., flue gas) has been limited due to substantial economic hurdles. Process intensification offers a pathway to enhance the cost efficiency of CO2 sequestration. One approach that has garnered significant attention is the process integration of phase-change absorbents. Among these, bis(iminoguanidines) have shown considerable promise in recent literature. Particularly, glyoxal-bis(iminoguanidine) (GBIG) has demonstrated the ability to precipitate HCO3 with low regeneration energy demand. However, GBIG and comparable phase-change absorbents require the integration of alkaline scrubbing with reactive precipitation in a single unit operation (gas-liquid reactive precipitation), introducing operational challenges such as scaling and clogging in conventionally applied packed-bed columns. To mitigate these issues, this study investigates the use of a spray tower as a gas-liquid reactive precipitator for CO2 capture from a flue gas surrogate. A pilot-scale spray tower is designed, constructed, and operated. Contrary to expectations, Rayleigh breakup of liquid jets induces a bimodal droplet size distribution in the lower sections of the tower, indicating limited scalability and highlighting the need for liquid recycling. For comparative purposes, the investigation includes a CO32-precipitating system (Ba(OH)2) and a non-precipitating system (NaOH), alongside GBIG. All systems demonstrate stable operability in single-pass and batch modes. During liquid recycling, small amounts of solids are entrained to the tower top. Nevertheless, no evidence of scaling or clogging is detected at the orifice plate, suggesting that the precipitated solids are significantly smaller than the orifice diameter. In the final performance comparison, the GBIG system demonstrates superior CO2 capture efficiency relative to the Ba(OH)2 system. However, achieving this efficiency comes at the expense of process kinetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信