近等摩尔H2/CO2条件下,Ni/Ce-Fe-Mn-Ca双功能材料协同增强CO2捕集转化为CO

Hao Wang , Lei Liu , Hanzi Liu , Xuancan Zhu , Zhiqiang Sun
{"title":"近等摩尔H2/CO2条件下,Ni/Ce-Fe-Mn-Ca双功能材料协同增强CO2捕集转化为CO","authors":"Hao Wang ,&nbsp;Lei Liu ,&nbsp;Hanzi Liu ,&nbsp;Xuancan Zhu ,&nbsp;Zhiqiang Sun","doi":"10.1016/j.ccst.2025.100520","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated CO<sub>2</sub> capture and utilization (ICCU) coupled with the reverse water-gas shift reaction offers a promising route to convert captured CO<sub>2</sub> into value-added CO using Ca-based dual functional materials (DFMs), providing an economically viable strategy for reducing CO<sub>2</sub> emissions from energy and industry sources. However, existing Ca-based DMFs typically require a high H<sub>2</sub>/CO<sub>2</sub> ratio to achieve efficient catalytic CO generation from adsorbed CO<sub>2</sub>. To address this limitation, this study develops a series of Ni and Ce co-modified Fe-Mn-Ca DFMs that enable high CO<sub>2</sub> conversion and CO yield under near-equimolar H<sub>2</sub>/CO<sub>2</sub> conditions in a fixed-bed reactor. Results indicate that CaO modified with a Fe/Mn molar ratio of 7:3 exhibits a CO<sub>2</sub> capture capacity of 11.42 mmol <em>g</em><sup>−1</sup> and subsequent CO<sub>2</sub> conversion of 58.7 %. Further modification of this optimized Fe-Mn-Ca material with Ni and Ce cooperative enhancement performance, achieving 61 % CO<sub>2</sub> conversion and 100 % CO selectivity at a H<sub>2</sub>/CO<sub>2</sub> ratio of 1:1, with only 18 % decay over 10 consecutive cycles. Mechanistic insights into the cyclic CO<sub>2</sub> adsorption and hydrogenation processes, as well as performance attenuation, were elucidated through material characterization. The effective formation of formate intermediates is responsible for the production of CO from the adsorbed CO<sub>2</sub> under near-equimolar H<sub>2</sub>/CO<sub>2</sub> conditions. Finally, comparative performance analysis and enhancement mechanisms are discussed. These findings establish a material foundation for ICCU systems targeting CO production in a serial dual-fluidized bed reactor.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100520"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative enhancement of Ni/Ce-Fe-Mn-Ca dual functional materials for integrated CO2 capture and conversion to CO under near-equimolar H2/CO2 conditions\",\"authors\":\"Hao Wang ,&nbsp;Lei Liu ,&nbsp;Hanzi Liu ,&nbsp;Xuancan Zhu ,&nbsp;Zhiqiang Sun\",\"doi\":\"10.1016/j.ccst.2025.100520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated CO<sub>2</sub> capture and utilization (ICCU) coupled with the reverse water-gas shift reaction offers a promising route to convert captured CO<sub>2</sub> into value-added CO using Ca-based dual functional materials (DFMs), providing an economically viable strategy for reducing CO<sub>2</sub> emissions from energy and industry sources. However, existing Ca-based DMFs typically require a high H<sub>2</sub>/CO<sub>2</sub> ratio to achieve efficient catalytic CO generation from adsorbed CO<sub>2</sub>. To address this limitation, this study develops a series of Ni and Ce co-modified Fe-Mn-Ca DFMs that enable high CO<sub>2</sub> conversion and CO yield under near-equimolar H<sub>2</sub>/CO<sub>2</sub> conditions in a fixed-bed reactor. Results indicate that CaO modified with a Fe/Mn molar ratio of 7:3 exhibits a CO<sub>2</sub> capture capacity of 11.42 mmol <em>g</em><sup>−1</sup> and subsequent CO<sub>2</sub> conversion of 58.7 %. Further modification of this optimized Fe-Mn-Ca material with Ni and Ce cooperative enhancement performance, achieving 61 % CO<sub>2</sub> conversion and 100 % CO selectivity at a H<sub>2</sub>/CO<sub>2</sub> ratio of 1:1, with only 18 % decay over 10 consecutive cycles. Mechanistic insights into the cyclic CO<sub>2</sub> adsorption and hydrogenation processes, as well as performance attenuation, were elucidated through material characterization. The effective formation of formate intermediates is responsible for the production of CO from the adsorbed CO<sub>2</sub> under near-equimolar H<sub>2</sub>/CO<sub>2</sub> conditions. Finally, comparative performance analysis and enhancement mechanisms are discussed. These findings establish a material foundation for ICCU systems targeting CO production in a serial dual-fluidized bed reactor.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"17 \",\"pages\":\"Article 100520\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

综合二氧化碳捕集与利用(ICCU)与逆向水气转换反应相结合,为利用ca基双功能材料(dfm)将捕获的二氧化碳转化为增值CO提供了一条有前途的途径,为减少能源和工业来源的二氧化碳排放提供了一种经济可行的策略。然而,现有的ca基dmf通常需要较高的H2/CO2比来实现吸附二氧化碳的高效催化CO生成。为了解决这一限制,本研究开发了一系列Ni和Ce共改性Fe-Mn-Ca DFMs,在固定床反应器中,在接近等摩尔的H2/CO2条件下实现高CO2转化率和CO产率。结果表明,当Fe/Mn摩尔比为7:3时,CaO的CO2捕获能力为11.42 mmol g−1,CO2转化率为58.7%。对该优化的Fe-Mn-Ca材料进行进一步改性,使其具有Ni和Ce的协同增强性能,在H2/CO2比为1:1的情况下,实现了61%的CO2转化率和100%的CO选择性,在连续10次循环中仅衰减18%。通过材料表征,阐明了循环CO2吸附和加氢过程以及性能衰减的机理。在接近等摩尔的H2/CO2条件下,甲酸酯中间体的有效形成是吸附CO2产生CO的原因。最后,讨论了性能比较分析和增强机制。这些发现为在串联双流化床反应器中生产CO的ICCU系统奠定了物质基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative enhancement of Ni/Ce-Fe-Mn-Ca dual functional materials for integrated CO2 capture and conversion to CO under near-equimolar H2/CO2 conditions
Integrated CO2 capture and utilization (ICCU) coupled with the reverse water-gas shift reaction offers a promising route to convert captured CO2 into value-added CO using Ca-based dual functional materials (DFMs), providing an economically viable strategy for reducing CO2 emissions from energy and industry sources. However, existing Ca-based DMFs typically require a high H2/CO2 ratio to achieve efficient catalytic CO generation from adsorbed CO2. To address this limitation, this study develops a series of Ni and Ce co-modified Fe-Mn-Ca DFMs that enable high CO2 conversion and CO yield under near-equimolar H2/CO2 conditions in a fixed-bed reactor. Results indicate that CaO modified with a Fe/Mn molar ratio of 7:3 exhibits a CO2 capture capacity of 11.42 mmol g−1 and subsequent CO2 conversion of 58.7 %. Further modification of this optimized Fe-Mn-Ca material with Ni and Ce cooperative enhancement performance, achieving 61 % CO2 conversion and 100 % CO selectivity at a H2/CO2 ratio of 1:1, with only 18 % decay over 10 consecutive cycles. Mechanistic insights into the cyclic CO2 adsorption and hydrogenation processes, as well as performance attenuation, were elucidated through material characterization. The effective formation of formate intermediates is responsible for the production of CO from the adsorbed CO2 under near-equimolar H2/CO2 conditions. Finally, comparative performance analysis and enhancement mechanisms are discussed. These findings establish a material foundation for ICCU systems targeting CO production in a serial dual-fluidized bed reactor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信