TransSTC:变压器跟踪器满足有效的时空线索

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hong Zhang , Wanli Xing , Yifan Yang , Hanyang Liu , Ding Yuan
{"title":"TransSTC:变压器跟踪器满足有效的时空线索","authors":"Hong Zhang ,&nbsp;Wanli Xing ,&nbsp;Yifan Yang ,&nbsp;Hanyang Liu ,&nbsp;Ding Yuan","doi":"10.1016/j.patcog.2025.112303","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, researchers have started developing trackers using the powerful global modeling capabilities of transformer networks. However, existing transformer trackers usually model all template spatial cues indiscriminately and ignore temporal cues of target state changes. This distracts the tracker’s attention and gradually fails to understand the target’s latest state. Therefore, we propose a new tracker called TransSTC, which explores the effective spatial cues in the template and temporal cues during tracking to improve the tracker’s performance. Specifically, we design the target-aware focused coding network to emphasize the efficient spatial cues in the templates, alleviating the impact of spatial cues with low associations of targets in templates on the tracker’s localization accuracy. Additionally, we employ the multi-temporal template update structure that accurately captures variations in the target’s appearance. Within this structure, the collected samples are assessed for target appearance similarity and environmental interference, followed by a three-level sample selection process to ensure the accurate template update. Finally, we introduce the motion constraint framework to dynamically adjust the classification results based on the target’s historical motion trajectory. Extensive experimental results on seven tracking benchmarks demonstrate that TransSTC achieves competitive tracking performance.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112303"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransSTC: transformer tracker meets efficient spatial-temporal cues\",\"authors\":\"Hong Zhang ,&nbsp;Wanli Xing ,&nbsp;Yifan Yang ,&nbsp;Hanyang Liu ,&nbsp;Ding Yuan\",\"doi\":\"10.1016/j.patcog.2025.112303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, researchers have started developing trackers using the powerful global modeling capabilities of transformer networks. However, existing transformer trackers usually model all template spatial cues indiscriminately and ignore temporal cues of target state changes. This distracts the tracker’s attention and gradually fails to understand the target’s latest state. Therefore, we propose a new tracker called TransSTC, which explores the effective spatial cues in the template and temporal cues during tracking to improve the tracker’s performance. Specifically, we design the target-aware focused coding network to emphasize the efficient spatial cues in the templates, alleviating the impact of spatial cues with low associations of targets in templates on the tracker’s localization accuracy. Additionally, we employ the multi-temporal template update structure that accurately captures variations in the target’s appearance. Within this structure, the collected samples are assessed for target appearance similarity and environmental interference, followed by a three-level sample selection process to ensure the accurate template update. Finally, we introduce the motion constraint framework to dynamically adjust the classification results based on the target’s historical motion trajectory. Extensive experimental results on seven tracking benchmarks demonstrate that TransSTC achieves competitive tracking performance.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112303\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325009641\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325009641","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,研究人员开始利用变压器网络强大的全球建模能力开发跟踪器。然而,现有的变压器跟踪器通常不加区分地对所有模板空间线索进行建模,而忽略了目标状态变化的时间线索。这会分散跟踪器的注意力,并逐渐无法理解目标的最新状态。因此,我们提出了一种新的跟踪器TransSTC,它在跟踪过程中探索模板中的有效空间线索和时间线索,以提高跟踪器的性能。具体而言,我们设计了目标感知聚焦编码网络,以强调模板中有效的空间线索,减轻模板中目标关联度低的空间线索对跟踪器定位精度的影响。此外,我们采用多时态模板更新结构,准确捕获目标外观的变化。在该结构中,收集的样本进行目标外观相似性和环境干扰评估,然后进行三级样本选择过程,以确保准确的模板更新。最后,引入运动约束框架,根据目标的历史运动轨迹动态调整分类结果。在七个跟踪基准上的大量实验结果表明,TransSTC实现了具有竞争力的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransSTC: transformer tracker meets efficient spatial-temporal cues
Recently, researchers have started developing trackers using the powerful global modeling capabilities of transformer networks. However, existing transformer trackers usually model all template spatial cues indiscriminately and ignore temporal cues of target state changes. This distracts the tracker’s attention and gradually fails to understand the target’s latest state. Therefore, we propose a new tracker called TransSTC, which explores the effective spatial cues in the template and temporal cues during tracking to improve the tracker’s performance. Specifically, we design the target-aware focused coding network to emphasize the efficient spatial cues in the templates, alleviating the impact of spatial cues with low associations of targets in templates on the tracker’s localization accuracy. Additionally, we employ the multi-temporal template update structure that accurately captures variations in the target’s appearance. Within this structure, the collected samples are assessed for target appearance similarity and environmental interference, followed by a three-level sample selection process to ensure the accurate template update. Finally, we introduce the motion constraint framework to dynamically adjust the classification results based on the target’s historical motion trajectory. Extensive experimental results on seven tracking benchmarks demonstrate that TransSTC achieves competitive tracking performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信