利用计算机视觉、物联网和区块链实现气候智能型种植的农业

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sajid Safeer , Pierluigi Gallo , Cataldo Pulvento
{"title":"利用计算机视觉、物联网和区块链实现气候智能型种植的农业","authors":"Sajid Safeer ,&nbsp;Pierluigi Gallo ,&nbsp;Cataldo Pulvento","doi":"10.1016/j.iot.2025.101749","DOIUrl":null,"url":null,"abstract":"<div><div>Modern agriculture faces critical challenges such as climate change, food security and supply chain inefficiencies, which demand innovative solutions. Traditional farming systems often lack real time monitoring, data security and transparency, leading to wastefulness and quality concerns. To address these, we present a comprehensive precision agriculture framework that integrates Internet of Things (IoT) sensors, Raspberry Pi (R-Pi) edge computing, blockchain based data management and computer vision (CV) assisted statistical modeling. The system collects environmental data via a sensor network, processes it at the edge using R-Pi, and records summarized outputs on a secure Ethereum based blockchain using smart contracts. Simultaneously, CV modules perform real time quality assessment and anomaly detection. A Markov chain based stochastic model is employed to track quality degradation in high value crops. The methodology is validated through a saffron use case, demonstrating effectiveness in monitoring filament degradation and detecting potential fraud. This integration enhances real time decision making, ensures traceability and promotes sustainability in climate smart agriculture.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101749"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agri-farming with computer vision, IoT and blockchain towards climate smart cultivation\",\"authors\":\"Sajid Safeer ,&nbsp;Pierluigi Gallo ,&nbsp;Cataldo Pulvento\",\"doi\":\"10.1016/j.iot.2025.101749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern agriculture faces critical challenges such as climate change, food security and supply chain inefficiencies, which demand innovative solutions. Traditional farming systems often lack real time monitoring, data security and transparency, leading to wastefulness and quality concerns. To address these, we present a comprehensive precision agriculture framework that integrates Internet of Things (IoT) sensors, Raspberry Pi (R-Pi) edge computing, blockchain based data management and computer vision (CV) assisted statistical modeling. The system collects environmental data via a sensor network, processes it at the edge using R-Pi, and records summarized outputs on a secure Ethereum based blockchain using smart contracts. Simultaneously, CV modules perform real time quality assessment and anomaly detection. A Markov chain based stochastic model is employed to track quality degradation in high value crops. The methodology is validated through a saffron use case, demonstrating effectiveness in monitoring filament degradation and detecting potential fraud. This integration enhances real time decision making, ensures traceability and promotes sustainability in climate smart agriculture.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"34 \",\"pages\":\"Article 101749\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525002628\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002628","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现代农业面临着气候变化、粮食安全和供应链效率低下等严峻挑战,需要创新的解决方案。传统农业系统往往缺乏实时监控、数据安全和透明度,导致浪费和质量问题。为了解决这些问题,我们提出了一个全面的精准农业框架,该框架集成了物联网(IoT)传感器、树莓派(R-Pi)边缘计算、基于区块链的数据管理和计算机视觉(CV)辅助统计建模。该系统通过传感器网络收集环境数据,使用R-Pi在边缘处理数据,并使用智能合约在基于以太坊的安全区块链上记录汇总输出。同时,CV模块进行实时质量评估和异常检测。采用基于马尔可夫链的随机模型跟踪高价值作物的品质退化。通过藏红花用例验证了该方法,证明了在监测灯丝降解和检测潜在欺诈方面的有效性。这种整合增强了实时决策,确保了可追溯性,并促进了气候智能型农业的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agri-farming with computer vision, IoT and blockchain towards climate smart cultivation
Modern agriculture faces critical challenges such as climate change, food security and supply chain inefficiencies, which demand innovative solutions. Traditional farming systems often lack real time monitoring, data security and transparency, leading to wastefulness and quality concerns. To address these, we present a comprehensive precision agriculture framework that integrates Internet of Things (IoT) sensors, Raspberry Pi (R-Pi) edge computing, blockchain based data management and computer vision (CV) assisted statistical modeling. The system collects environmental data via a sensor network, processes it at the edge using R-Pi, and records summarized outputs on a secure Ethereum based blockchain using smart contracts. Simultaneously, CV modules perform real time quality assessment and anomaly detection. A Markov chain based stochastic model is employed to track quality degradation in high value crops. The methodology is validated through a saffron use case, demonstrating effectiveness in monitoring filament degradation and detecting potential fraud. This integration enhances real time decision making, ensures traceability and promotes sustainability in climate smart agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信