{"title":"促聚变脂质纳米载体:先进药物输送系统的自然启发设计","authors":"Gennaro Balenzano , Numan Eczacioglu , Nunzio Denora , Andreas Bernkop-Schnürch","doi":"10.1016/j.cis.2025.103667","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid nanocarriers are a useful tool for intracellular delivery of drugs that are otherwise unable to enter their target cells. Most of these nanocarriers are designed for an endocytotic uptake, although this route of intracellular drug delivery has a number of shortcomings. A promising alternative is fusogenic lipid nanocarriers, since by this uptake mechanism lysosomal degradation problems being associated with endocytosis can be excluded and drug release into the target cell can be synchronized with the fusion process. Various mechanisms being responsible for biological fusion events, including fertilization, exocytosis, viral infection and plasma membrane repair can be copied and transferred to nanocarriers enabling them to fuse with target cells. In particular, curvature, fluidity and surface charge of nanocarriers are key parameters for fusogenic properties. Furthermore, lipid nanocarriers can be decorated with fusogenic (poly)peptides such as viral fusion peptides or SNARE-derived lipopeptides. Within this review we provide an overview about the underlying mechanisms being responsible for cell membrane fusion processes, we demonstrate how this knowledge can be utilized for the design of fusogenic lipid nanocarriers and we summarize most promising applications of fusogenic nanocarriers for treatment of different diseases.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103667"},"PeriodicalIF":19.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusogenic lipid nanocarriers: Nature-inspired design for advanced drug delivery systems\",\"authors\":\"Gennaro Balenzano , Numan Eczacioglu , Nunzio Denora , Andreas Bernkop-Schnürch\",\"doi\":\"10.1016/j.cis.2025.103667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lipid nanocarriers are a useful tool for intracellular delivery of drugs that are otherwise unable to enter their target cells. Most of these nanocarriers are designed for an endocytotic uptake, although this route of intracellular drug delivery has a number of shortcomings. A promising alternative is fusogenic lipid nanocarriers, since by this uptake mechanism lysosomal degradation problems being associated with endocytosis can be excluded and drug release into the target cell can be synchronized with the fusion process. Various mechanisms being responsible for biological fusion events, including fertilization, exocytosis, viral infection and plasma membrane repair can be copied and transferred to nanocarriers enabling them to fuse with target cells. In particular, curvature, fluidity and surface charge of nanocarriers are key parameters for fusogenic properties. Furthermore, lipid nanocarriers can be decorated with fusogenic (poly)peptides such as viral fusion peptides or SNARE-derived lipopeptides. Within this review we provide an overview about the underlying mechanisms being responsible for cell membrane fusion processes, we demonstrate how this knowledge can be utilized for the design of fusogenic lipid nanocarriers and we summarize most promising applications of fusogenic nanocarriers for treatment of different diseases.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"346 \",\"pages\":\"Article 103667\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625002787\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fusogenic lipid nanocarriers: Nature-inspired design for advanced drug delivery systems
Lipid nanocarriers are a useful tool for intracellular delivery of drugs that are otherwise unable to enter their target cells. Most of these nanocarriers are designed for an endocytotic uptake, although this route of intracellular drug delivery has a number of shortcomings. A promising alternative is fusogenic lipid nanocarriers, since by this uptake mechanism lysosomal degradation problems being associated with endocytosis can be excluded and drug release into the target cell can be synchronized with the fusion process. Various mechanisms being responsible for biological fusion events, including fertilization, exocytosis, viral infection and plasma membrane repair can be copied and transferred to nanocarriers enabling them to fuse with target cells. In particular, curvature, fluidity and surface charge of nanocarriers are key parameters for fusogenic properties. Furthermore, lipid nanocarriers can be decorated with fusogenic (poly)peptides such as viral fusion peptides or SNARE-derived lipopeptides. Within this review we provide an overview about the underlying mechanisms being responsible for cell membrane fusion processes, we demonstrate how this knowledge can be utilized for the design of fusogenic lipid nanocarriers and we summarize most promising applications of fusogenic nanocarriers for treatment of different diseases.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.