Pythagore L. Kyabutwa , Nadiah Alyamni , Jandro L. Abot , Alexander G. Zestos
{"title":"电化学方法实时检测水和土壤中重金属的研究进展","authors":"Pythagore L. Kyabutwa , Nadiah Alyamni , Jandro L. Abot , Alexander G. Zestos","doi":"10.1016/j.coelec.2025.101749","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy trace elements (HTEs), including toxic metals such as lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), present a growing environmental and public health concern due to their persistence and bioaccumulation in water and soil systems. Driven by increased demand for strategic and rare earth metals in emerging technologies, anthropogenic activities such as mining, industrial discharge, and agriculture have intensified environmental contamination. Traditional detection methods such as (<em>in situ</em> and online) applications. This review highlights recent advances in standard electrochemical techniques, particularly voltammetric ones such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), and anodic stripping voltammetry (ASV), in addition to being non-voltammetric including electrochemical impedance spectroscopy (EIS) and chronopotentiometry methods enhanced by nanomaterials, including carbon nanomaterials: single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs); metal and metal oxide nanoparticles; polymer and hybrid nanocomposites; and metal organic frameworks (MOFs). These materials improve sensor sensitivity, selectivity, stability, and portability of standard electrochemical methods, making them ideal for real-time and <em>in situ</em> and online for HTEs. In this review article, current innovations in standard electrochemical techniques with nanomaterials and hybrid nanocomposites improving sensor architecture, functionalization, sensitivity and selectivity are discussed alongside performance metrics and limitations.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"54 ","pages":"Article 101749"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent trends in electrochemical methods for real-time detection of heavy metals in water and soil: A review\",\"authors\":\"Pythagore L. Kyabutwa , Nadiah Alyamni , Jandro L. Abot , Alexander G. Zestos\",\"doi\":\"10.1016/j.coelec.2025.101749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavy trace elements (HTEs), including toxic metals such as lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), present a growing environmental and public health concern due to their persistence and bioaccumulation in water and soil systems. Driven by increased demand for strategic and rare earth metals in emerging technologies, anthropogenic activities such as mining, industrial discharge, and agriculture have intensified environmental contamination. Traditional detection methods such as (<em>in situ</em> and online) applications. This review highlights recent advances in standard electrochemical techniques, particularly voltammetric ones such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), and anodic stripping voltammetry (ASV), in addition to being non-voltammetric including electrochemical impedance spectroscopy (EIS) and chronopotentiometry methods enhanced by nanomaterials, including carbon nanomaterials: single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs); metal and metal oxide nanoparticles; polymer and hybrid nanocomposites; and metal organic frameworks (MOFs). These materials improve sensor sensitivity, selectivity, stability, and portability of standard electrochemical methods, making them ideal for real-time and <em>in situ</em> and online for HTEs. In this review article, current innovations in standard electrochemical techniques with nanomaterials and hybrid nanocomposites improving sensor architecture, functionalization, sensitivity and selectivity are discussed alongside performance metrics and limitations.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"54 \",\"pages\":\"Article 101749\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910325001085\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325001085","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent trends in electrochemical methods for real-time detection of heavy metals in water and soil: A review
Heavy trace elements (HTEs), including toxic metals such as lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), present a growing environmental and public health concern due to their persistence and bioaccumulation in water and soil systems. Driven by increased demand for strategic and rare earth metals in emerging technologies, anthropogenic activities such as mining, industrial discharge, and agriculture have intensified environmental contamination. Traditional detection methods such as (in situ and online) applications. This review highlights recent advances in standard electrochemical techniques, particularly voltammetric ones such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), and anodic stripping voltammetry (ASV), in addition to being non-voltammetric including electrochemical impedance spectroscopy (EIS) and chronopotentiometry methods enhanced by nanomaterials, including carbon nanomaterials: single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs); metal and metal oxide nanoparticles; polymer and hybrid nanocomposites; and metal organic frameworks (MOFs). These materials improve sensor sensitivity, selectivity, stability, and portability of standard electrochemical methods, making them ideal for real-time and in situ and online for HTEs. In this review article, current innovations in standard electrochemical techniques with nanomaterials and hybrid nanocomposites improving sensor architecture, functionalization, sensitivity and selectivity are discussed alongside performance metrics and limitations.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •