Erdős原始集合的不等式

IF 0.7 3区 数学 Q3 MATHEMATICS
Petr Kucheriaviy
{"title":"Erdős原始集合的不等式","authors":"Petr Kucheriaviy","doi":"10.1016/j.jnt.2025.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>A set of natural numbers <em>A</em> is called primitive if no element of <em>A</em> divides any other. Let <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of prime divisors of <em>n</em> counted with multiplicity. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>a</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msup></mrow></mfrac></math></span>, where <span><math><mi>z</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>. Erdős proved in 1935 that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>a</mi><mi>log</mi><mo>⁡</mo><mi>a</mi></mrow></mfrac></math></span> is uniformly bounded over all primitive sets <em>A</em>. We prove a generalization of Erdős inequality which provides an analogous result for <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, when <span><math><mi>z</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, we study the supremum of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> over all primitive sets. We also discuss <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></msub><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which is a generalization of Dirichlet density. We study the asymptotics of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>n</mi><mo>:</mo><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. For <span><math><mi>z</mi><mo>=</mo><mn>1</mn></math></span> we find the next term in asymptotic expansion of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup><mo>/</mo><mi>a</mi></math></span> over all primitive subsets of <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 113-152"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős inequality for primitive sets\",\"authors\":\"Petr Kucheriaviy\",\"doi\":\"10.1016/j.jnt.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A set of natural numbers <em>A</em> is called primitive if no element of <em>A</em> divides any other. Let <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of prime divisors of <em>n</em> counted with multiplicity. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>a</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msup></mrow></mfrac></math></span>, where <span><math><mi>z</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>. Erdős proved in 1935 that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>a</mi><mi>log</mi><mo>⁡</mo><mi>a</mi></mrow></mfrac></math></span> is uniformly bounded over all primitive sets <em>A</em>. We prove a generalization of Erdős inequality which provides an analogous result for <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, when <span><math><mi>z</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, we study the supremum of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> over all primitive sets. We also discuss <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></msub><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which is a generalization of Dirichlet density. We study the asymptotics of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>n</mi><mo>:</mo><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. For <span><math><mi>z</mi><mo>=</mo><mn>1</mn></math></span> we find the next term in asymptotic expansion of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup><mo>/</mo><mi>a</mi></math></span> over all primitive subsets of <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 113-152\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果自然数A中的任何元素都不能整除其他自然数,则称自然数A为本数。设Ω(n)为n具有多重性的质因数个数。设fz(A)=∑A∈AzΩ(A) A (log (A) z,其中z∈R>;0。Erdős在1935年证明了f1(A)=∑A∈A1alog (A)在所有原始集A上是一致有界的。我们证明了Erdős不等式的一个推广,对于z∈(0,2)时的fz(A)提供了一个类似的结果。进一步,我们研究了fz(A)在所有原始集合上的最优性。我们还讨论了limz→0 (A),它是Dirichlet密度的推广。我们研究了fz(Pk)的渐近性,其中Pk={n:Ω(n)=k}。对于z=1,我们找到f1(Pk)的渐近展开中的下一项,改进了Gorodetsky, Lichtman和Wong的结果。我们还研究了∑a∈AzΩ(a)/a在[1,N]的所有原始子集上的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erdős inequality for primitive sets
A set of natural numbers A is called primitive if no element of A divides any other. Let Ω(n) be the number of prime divisors of n counted with multiplicity. Let fz(A)=aAzΩ(a)a(loga)z, where zR>0. Erdős proved in 1935 that f1(A)=aA1aloga is uniformly bounded over all primitive sets A. We prove a generalization of Erdős inequality which provides an analogous result for fz(A), when z(0,2). Furthermore, we study the supremum of fz(A) over all primitive sets. We also discuss limz0fz(A), which is a generalization of Dirichlet density. We study the asymptotics of fz(Pk), where Pk={n:Ω(n)=k}. For z=1 we find the next term in asymptotic expansion of f1(Pk) refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of aAzΩ(a)/a over all primitive subsets of [1,N].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信