{"title":"Erdős原始集合的不等式","authors":"Petr Kucheriaviy","doi":"10.1016/j.jnt.2025.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>A set of natural numbers <em>A</em> is called primitive if no element of <em>A</em> divides any other. Let <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of prime divisors of <em>n</em> counted with multiplicity. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>a</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msup></mrow></mfrac></math></span>, where <span><math><mi>z</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>></mo><mn>0</mn></mrow></msub></math></span>. Erdős proved in 1935 that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>a</mi><mi>log</mi><mo></mo><mi>a</mi></mrow></mfrac></math></span> is uniformly bounded over all primitive sets <em>A</em>. We prove a generalization of Erdős inequality which provides an analogous result for <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, when <span><math><mi>z</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, we study the supremum of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> over all primitive sets. We also discuss <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></msub><mo></mo><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which is a generalization of Dirichlet density. We study the asymptotics of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>n</mi><mo>:</mo><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. For <span><math><mi>z</mi><mo>=</mo><mn>1</mn></math></span> we find the next term in asymptotic expansion of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup><mo>/</mo><mi>a</mi></math></span> over all primitive subsets of <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 113-152"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős inequality for primitive sets\",\"authors\":\"Petr Kucheriaviy\",\"doi\":\"10.1016/j.jnt.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A set of natural numbers <em>A</em> is called primitive if no element of <em>A</em> divides any other. Let <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of prime divisors of <em>n</em> counted with multiplicity. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>a</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msup></mrow></mfrac></math></span>, where <span><math><mi>z</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>></mo><mn>0</mn></mrow></msub></math></span>. Erdős proved in 1935 that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>a</mi><mi>log</mi><mo></mo><mi>a</mi></mrow></mfrac></math></span> is uniformly bounded over all primitive sets <em>A</em>. We prove a generalization of Erdős inequality which provides an analogous result for <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, when <span><math><mi>z</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, we study the supremum of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> over all primitive sets. We also discuss <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></msub><mo></mo><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which is a generalization of Dirichlet density. We study the asymptotics of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>n</mi><mo>:</mo><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span>. For <span><math><mi>z</mi><mo>=</mo><mn>1</mn></math></span> we find the next term in asymptotic expansion of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msup><mo>/</mo><mi>a</mi></math></span> over all primitive subsets of <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 113-152\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果自然数A中的任何元素都不能整除其他自然数,则称自然数A为本数。设Ω(n)为n具有多重性的质因数个数。设fz(A)=∑A∈AzΩ(A) A (log (A) z,其中z∈R>;0。Erdős在1935年证明了f1(A)=∑A∈A1alog (A)在所有原始集A上是一致有界的。我们证明了Erdős不等式的一个推广,对于z∈(0,2)时的fz(A)提供了一个类似的结果。进一步,我们研究了fz(A)在所有原始集合上的最优性。我们还讨论了limz→0 (A),它是Dirichlet密度的推广。我们研究了fz(Pk)的渐近性,其中Pk={n:Ω(n)=k}。对于z=1,我们找到f1(Pk)的渐近展开中的下一项,改进了Gorodetsky, Lichtman和Wong的结果。我们还研究了∑a∈AzΩ(a)/a在[1,N]的所有原始子集上的最优性。
A set of natural numbers A is called primitive if no element of A divides any other. Let be the number of prime divisors of n counted with multiplicity. Let , where . Erdős proved in 1935 that is uniformly bounded over all primitive sets A. We prove a generalization of Erdős inequality which provides an analogous result for , when . Furthermore, we study the supremum of over all primitive sets. We also discuss , which is a generalization of Dirichlet density. We study the asymptotics of , where . For we find the next term in asymptotic expansion of refining the result of Gorodetsky, Lichtman, and Wong. We also study the supremum of over all primitive subsets of .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.