{"title":"具有周期临界点的二次有理函数的伽罗瓦理论","authors":"Özlem Ejder","doi":"10.1016/j.jnt.2025.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>Given a number field <em>k</em>, and a quadratic rational function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>k</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, the associated arboreal representation of the absolute Galois group of <em>k</em> is a subgroup of the automorphism group of a regular rooted binary tree. Boston and Jones conjectured that the image of such a representation for <span><math><mi>f</mi><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> contains a dense set of settled elements. An automorphism is settled if the number of its orbits on the <em>n</em>th level of the tree remains small as <em>n</em> goes to infinity.</div><div>In this article, we exhibit many quadratic rational functions whose associated Arboreal Galois groups are not densely settled. These examples arise from quadratic rational functions whose critical points lie in a single periodic orbit. To prove our results, we present a detailed study of the iterated monodromy groups (IMG) of <em>f</em>, which also allows us to provide a negative answer to Jones and Levy's question regarding settled pairs.</div><div>Furthermore, we study the iterated extension <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> generated by adjoining to <span><math><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> all roots of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> for a parameter <em>t</em>. We call the intersection of <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>, the field of constants associated with <em>f</em>. When one of the two critical points of <em>f</em> is the image of the other, we show that the field of constants is contained in the cyclotomic extension of <em>k</em> generated by all 2-power roots of unity. In particular, we prove the conjecture of Ejder, Kara, and Ozman regarding the rational function <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 212-245"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois theory of quadratic rational functions with periodic critical points\",\"authors\":\"Özlem Ejder\",\"doi\":\"10.1016/j.jnt.2025.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a number field <em>k</em>, and a quadratic rational function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>k</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, the associated arboreal representation of the absolute Galois group of <em>k</em> is a subgroup of the automorphism group of a regular rooted binary tree. Boston and Jones conjectured that the image of such a representation for <span><math><mi>f</mi><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> contains a dense set of settled elements. An automorphism is settled if the number of its orbits on the <em>n</em>th level of the tree remains small as <em>n</em> goes to infinity.</div><div>In this article, we exhibit many quadratic rational functions whose associated Arboreal Galois groups are not densely settled. These examples arise from quadratic rational functions whose critical points lie in a single periodic orbit. To prove our results, we present a detailed study of the iterated monodromy groups (IMG) of <em>f</em>, which also allows us to provide a negative answer to Jones and Levy's question regarding settled pairs.</div><div>Furthermore, we study the iterated extension <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> generated by adjoining to <span><math><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> all roots of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> for a parameter <em>t</em>. We call the intersection of <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>, the field of constants associated with <em>f</em>. When one of the two critical points of <em>f</em> is the image of the other, we show that the field of constants is contained in the cyclotomic extension of <em>k</em> generated by all 2-power roots of unity. In particular, we prove the conjecture of Ejder, Kara, and Ozman regarding the rational function <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 212-245\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Galois theory of quadratic rational functions with periodic critical points
Given a number field k, and a quadratic rational function , the associated arboreal representation of the absolute Galois group of k is a subgroup of the automorphism group of a regular rooted binary tree. Boston and Jones conjectured that the image of such a representation for contains a dense set of settled elements. An automorphism is settled if the number of its orbits on the nth level of the tree remains small as n goes to infinity.
In this article, we exhibit many quadratic rational functions whose associated Arboreal Galois groups are not densely settled. These examples arise from quadratic rational functions whose critical points lie in a single periodic orbit. To prove our results, we present a detailed study of the iterated monodromy groups (IMG) of f, which also allows us to provide a negative answer to Jones and Levy's question regarding settled pairs.
Furthermore, we study the iterated extension generated by adjoining to all roots of for for a parameter t. We call the intersection of with , the field of constants associated with f. When one of the two critical points of f is the image of the other, we show that the field of constants is contained in the cyclotomic extension of k generated by all 2-power roots of unity. In particular, we prove the conjecture of Ejder, Kara, and Ozman regarding the rational function .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.