{"title":"超声在混合系统中集成提高产氢率的研究进展","authors":"Slimane Merouani , Aissa Dehane , Oualid Hamdaoui","doi":"10.1016/j.ultsonch.2025.107552","DOIUrl":null,"url":null,"abstract":"<div><div>This review synthesizes recent developments in ultrasonication (US)/assisted and US/hybrid processes for hydrogen generation, with a focus on US/electrochemical techniques. It summarizes recent findings, discusses existing constraints, and suggests promising routes for further advancement. US/hybrid processes, including US/electrocatalytic techniques and other US-assisted methods, show great promise in improving efficiency and reducing the energy needed for hydrogen generation. The paper emphasizes how ultrasonication can accelerate electrochemical processes, improve mass transfer, and reduce overpotentials. Ultrasonication enhances the physical and chemical parameters of US/electrocatalytic processes by decreasing cell voltage and overpotentials while boosting overall energy efficiency. Other ultrasonication hybrid processes, such as sonocatalysis and US/photocatalysis, have demonstrated the potential to use ultrasonication to activate catalysts and increase hydrogen yields. Notwithstanding these progresses, difficulties remain, such as improving the understanding of the mechanisms underlying US-enhanced hydrogen generation; optimizing operating conditions (e.g., frequency, acoustic power, electrode materials, and solution temperature); and studying hydrogen production from non-aqueous solutions. This review provides a comprehensive framework for future investigation in this evolving field.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"121 ","pages":"Article 107552"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the integration of ultrasonication in hybrid systems for enhanced hydrogen yield\",\"authors\":\"Slimane Merouani , Aissa Dehane , Oualid Hamdaoui\",\"doi\":\"10.1016/j.ultsonch.2025.107552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review synthesizes recent developments in ultrasonication (US)/assisted and US/hybrid processes for hydrogen generation, with a focus on US/electrochemical techniques. It summarizes recent findings, discusses existing constraints, and suggests promising routes for further advancement. US/hybrid processes, including US/electrocatalytic techniques and other US-assisted methods, show great promise in improving efficiency and reducing the energy needed for hydrogen generation. The paper emphasizes how ultrasonication can accelerate electrochemical processes, improve mass transfer, and reduce overpotentials. Ultrasonication enhances the physical and chemical parameters of US/electrocatalytic processes by decreasing cell voltage and overpotentials while boosting overall energy efficiency. Other ultrasonication hybrid processes, such as sonocatalysis and US/photocatalysis, have demonstrated the potential to use ultrasonication to activate catalysts and increase hydrogen yields. Notwithstanding these progresses, difficulties remain, such as improving the understanding of the mechanisms underlying US-enhanced hydrogen generation; optimizing operating conditions (e.g., frequency, acoustic power, electrode materials, and solution temperature); and studying hydrogen production from non-aqueous solutions. This review provides a comprehensive framework for future investigation in this evolving field.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"121 \",\"pages\":\"Article 107552\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725003311\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725003311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A review on the integration of ultrasonication in hybrid systems for enhanced hydrogen yield
This review synthesizes recent developments in ultrasonication (US)/assisted and US/hybrid processes for hydrogen generation, with a focus on US/electrochemical techniques. It summarizes recent findings, discusses existing constraints, and suggests promising routes for further advancement. US/hybrid processes, including US/electrocatalytic techniques and other US-assisted methods, show great promise in improving efficiency and reducing the energy needed for hydrogen generation. The paper emphasizes how ultrasonication can accelerate electrochemical processes, improve mass transfer, and reduce overpotentials. Ultrasonication enhances the physical and chemical parameters of US/electrocatalytic processes by decreasing cell voltage and overpotentials while boosting overall energy efficiency. Other ultrasonication hybrid processes, such as sonocatalysis and US/photocatalysis, have demonstrated the potential to use ultrasonication to activate catalysts and increase hydrogen yields. Notwithstanding these progresses, difficulties remain, such as improving the understanding of the mechanisms underlying US-enhanced hydrogen generation; optimizing operating conditions (e.g., frequency, acoustic power, electrode materials, and solution temperature); and studying hydrogen production from non-aqueous solutions. This review provides a comprehensive framework for future investigation in this evolving field.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.