{"title":"tm掺杂和Yb/Er共掺杂锗酸盐碲酸盐玻璃的光谱和热成像特性研究","authors":"R. Lisiecki, P. Solarz, W. Ryba-Romanowski","doi":"10.1016/j.materresbull.2025.113786","DOIUrl":null,"url":null,"abstract":"<div><div>Oxyfluride Germanate Tellurite glasses single doped with (Tm<sup>3+</sup>) thulium, (Tm<sup>3+</sup>,Yb<sup>3+</sup>) thulium / ytterbium co-doped and (Tm<sup>3+</sup>,Yb<sup>3+</sup>,Er<sup>3+</sup>) thulium / ytterbium / erbium triple-doped were fabricated. Room temperature absorption spectra were employed to evaluate the relevant radiative transition rates and branching ratio of luminescence. Distribution of the measured emission lines within UV–vis spectral region is considerably different when the selective excitation wavelengths at 358 nm and 445 nm were utilized. The excellent color purity exceeding 90 % was estimated for Tm-doped glass luminescence. The significant quantum efficiency of thulium first excited state and the related NIR emission cross section indicate potential optical amplification between 1908–2080 nm. Effective broad band tellurium optical spectra were examined employing synchrotron radiation. Ultrashort laser pulse excitations disclosed the different relaxation dynamic of the excited states and the involved interionic phenomena. Luminescence intensity ratios as function of temperature were determined for some diverse combinations of the measured bands originating in thermally coupled and non-thermally coupled levels. The highest value of relative sensitivity S<sub>r</sub>=0.78 %K<sup>-1</sup> at <em>T</em> = 350 K was acquired for a Tm/Yb/Er co-doped glass utilizing both anti-Stokes emissions of thulium and erbium.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113786"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of spectroscopic and thermographic qualities of Tm-doped and Yb/Er co-doped germanate tellurite glasses\",\"authors\":\"R. Lisiecki, P. Solarz, W. Ryba-Romanowski\",\"doi\":\"10.1016/j.materresbull.2025.113786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxyfluride Germanate Tellurite glasses single doped with (Tm<sup>3+</sup>) thulium, (Tm<sup>3+</sup>,Yb<sup>3+</sup>) thulium / ytterbium co-doped and (Tm<sup>3+</sup>,Yb<sup>3+</sup>,Er<sup>3+</sup>) thulium / ytterbium / erbium triple-doped were fabricated. Room temperature absorption spectra were employed to evaluate the relevant radiative transition rates and branching ratio of luminescence. Distribution of the measured emission lines within UV–vis spectral region is considerably different when the selective excitation wavelengths at 358 nm and 445 nm were utilized. The excellent color purity exceeding 90 % was estimated for Tm-doped glass luminescence. The significant quantum efficiency of thulium first excited state and the related NIR emission cross section indicate potential optical amplification between 1908–2080 nm. Effective broad band tellurium optical spectra were examined employing synchrotron radiation. Ultrashort laser pulse excitations disclosed the different relaxation dynamic of the excited states and the involved interionic phenomena. Luminescence intensity ratios as function of temperature were determined for some diverse combinations of the measured bands originating in thermally coupled and non-thermally coupled levels. The highest value of relative sensitivity S<sub>r</sub>=0.78 %K<sup>-1</sup> at <em>T</em> = 350 K was acquired for a Tm/Yb/Er co-doped glass utilizing both anti-Stokes emissions of thulium and erbium.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113786\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004933\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004933","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Examination of spectroscopic and thermographic qualities of Tm-doped and Yb/Er co-doped germanate tellurite glasses
Oxyfluride Germanate Tellurite glasses single doped with (Tm3+) thulium, (Tm3+,Yb3+) thulium / ytterbium co-doped and (Tm3+,Yb3+,Er3+) thulium / ytterbium / erbium triple-doped were fabricated. Room temperature absorption spectra were employed to evaluate the relevant radiative transition rates and branching ratio of luminescence. Distribution of the measured emission lines within UV–vis spectral region is considerably different when the selective excitation wavelengths at 358 nm and 445 nm were utilized. The excellent color purity exceeding 90 % was estimated for Tm-doped glass luminescence. The significant quantum efficiency of thulium first excited state and the related NIR emission cross section indicate potential optical amplification between 1908–2080 nm. Effective broad band tellurium optical spectra were examined employing synchrotron radiation. Ultrashort laser pulse excitations disclosed the different relaxation dynamic of the excited states and the involved interionic phenomena. Luminescence intensity ratios as function of temperature were determined for some diverse combinations of the measured bands originating in thermally coupled and non-thermally coupled levels. The highest value of relative sensitivity Sr=0.78 %K-1 at T = 350 K was acquired for a Tm/Yb/Er co-doped glass utilizing both anti-Stokes emissions of thulium and erbium.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.