三维脑肿瘤分割和生存预测的深度学习框架

Ashfak Yeafi, Monira Islam, Md. Salah Uddin Yusuf
{"title":"三维脑肿瘤分割和生存预测的深度学习框架","authors":"Ashfak Yeafi,&nbsp;Monira Islam,&nbsp;Md. Salah Uddin Yusuf","doi":"10.1016/j.health.2025.100418","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient segmentation of brain tumors is crucial for early diagnosis, personalized treatment planning, and improved survival rates. Brain tumors exhibit complex spatial and morphological variations, making automated segmentation a challenging task. This study introduces a dynamic segmentation network (DSNet), a novel 3D brain tumor segmentation framework that integrates adversarial learning, dynamic convolutional neural network (DCNN), and attention mechanisms to enhance precision and robustness. DSNet processes 3D magnetic resonance imaging (MRI) volumes, including T1-weighted (T1), T1-weighted with contrast enhancement (T1ce), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR) modalities, capturing rich spatial and contextual features. Leveraging adversarial training, DSNet refines boundary definitions, while dynamic filters adapt to tumor-specific heterogeneities, ensuring accurate segmentation across diverse cases. The attention mechanism further emphasizes tumor-relevant regions, enhancing feature extraction and boundary delineation. The model was trained and validated on the BraTS 2020 dataset, achieving dice similarity coefficients of 0.959, 0.975, and 0.947 for whole tumors (WT), tumor cores (TC), and enhancing tumor (ET) regions, respectively. Its generalizability was further confirmed through evaluations on the BraTS 2019 and BraTS 2018 datasets. Additionally, volumetric features derived from segmented images were used to predict patients’ overall survival rates via a Random Forest (RF) classifier. To enhance accessibility, we integrated the segmentation and prediction processes into a user-friendly web application. DSNet outperforms state-of-the-art methods, providing a robust and accurate solution for 3D brain tumor segmentation with strong clinical potential.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100418"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning framework for 3D brain tumor segmentation and survival prediction\",\"authors\":\"Ashfak Yeafi,&nbsp;Monira Islam,&nbsp;Md. Salah Uddin Yusuf\",\"doi\":\"10.1016/j.health.2025.100418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and efficient segmentation of brain tumors is crucial for early diagnosis, personalized treatment planning, and improved survival rates. Brain tumors exhibit complex spatial and morphological variations, making automated segmentation a challenging task. This study introduces a dynamic segmentation network (DSNet), a novel 3D brain tumor segmentation framework that integrates adversarial learning, dynamic convolutional neural network (DCNN), and attention mechanisms to enhance precision and robustness. DSNet processes 3D magnetic resonance imaging (MRI) volumes, including T1-weighted (T1), T1-weighted with contrast enhancement (T1ce), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR) modalities, capturing rich spatial and contextual features. Leveraging adversarial training, DSNet refines boundary definitions, while dynamic filters adapt to tumor-specific heterogeneities, ensuring accurate segmentation across diverse cases. The attention mechanism further emphasizes tumor-relevant regions, enhancing feature extraction and boundary delineation. The model was trained and validated on the BraTS 2020 dataset, achieving dice similarity coefficients of 0.959, 0.975, and 0.947 for whole tumors (WT), tumor cores (TC), and enhancing tumor (ET) regions, respectively. Its generalizability was further confirmed through evaluations on the BraTS 2019 and BraTS 2018 datasets. Additionally, volumetric features derived from segmented images were used to predict patients’ overall survival rates via a Random Forest (RF) classifier. To enhance accessibility, we integrated the segmentation and prediction processes into a user-friendly web application. DSNet outperforms state-of-the-art methods, providing a robust and accurate solution for 3D brain tumor segmentation with strong clinical potential.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"8 \",\"pages\":\"Article 100418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确有效的脑肿瘤分割对于早期诊断、个性化治疗计划和提高生存率至关重要。脑肿瘤表现出复杂的空间和形态变化,使自动分割成为一项具有挑战性的任务。本研究引入了一种动态分割网络(DSNet),这是一种新的3D脑肿瘤分割框架,它集成了对抗学习、动态卷积神经网络(DCNN)和注意机制,以提高精度和鲁棒性。DSNet处理三维磁共振成像(MRI)体积,包括T1加权(T1)、T1加权对比度增强(T1ce)、T2加权(T2)和流体衰减反演恢复(FLAIR)模式,捕捉丰富的空间和背景特征。利用对抗训练,DSNet细化边界定义,而动态过滤器适应肿瘤特异性异质性,确保在不同情况下准确分割。注意机制进一步强调肿瘤相关区域,加强特征提取和边界划定。该模型在BraTS 2020数据集上进行了训练和验证,在全肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)区域上的骰子相似系数分别为0.959、0.975和0.947。通过对BraTS 2019和BraTS 2018数据集的评估,进一步证实了其通用性。此外,通过随机森林(RF)分类器,使用从分割图像中获得的体积特征来预测患者的总体生存率。为了提高可访问性,我们将分割和预测过程集成到一个用户友好的web应用程序中。DSNet优于最先进的方法,为具有强大临床潜力的3D脑肿瘤分割提供了强大而准确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning framework for 3D brain tumor segmentation and survival prediction
Accurate and efficient segmentation of brain tumors is crucial for early diagnosis, personalized treatment planning, and improved survival rates. Brain tumors exhibit complex spatial and morphological variations, making automated segmentation a challenging task. This study introduces a dynamic segmentation network (DSNet), a novel 3D brain tumor segmentation framework that integrates adversarial learning, dynamic convolutional neural network (DCNN), and attention mechanisms to enhance precision and robustness. DSNet processes 3D magnetic resonance imaging (MRI) volumes, including T1-weighted (T1), T1-weighted with contrast enhancement (T1ce), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR) modalities, capturing rich spatial and contextual features. Leveraging adversarial training, DSNet refines boundary definitions, while dynamic filters adapt to tumor-specific heterogeneities, ensuring accurate segmentation across diverse cases. The attention mechanism further emphasizes tumor-relevant regions, enhancing feature extraction and boundary delineation. The model was trained and validated on the BraTS 2020 dataset, achieving dice similarity coefficients of 0.959, 0.975, and 0.947 for whole tumors (WT), tumor cores (TC), and enhancing tumor (ET) regions, respectively. Its generalizability was further confirmed through evaluations on the BraTS 2019 and BraTS 2018 datasets. Additionally, volumetric features derived from segmented images were used to predict patients’ overall survival rates via a Random Forest (RF) classifier. To enhance accessibility, we integrated the segmentation and prediction processes into a user-friendly web application. DSNet outperforms state-of-the-art methods, providing a robust and accurate solution for 3D brain tumor segmentation with strong clinical potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信