银屑病患者生活质量预测的惩罚回归和机器学习方法

Teerawat Simmachan , Napatsawan Lerdpraserdpakorn , Jarupa Deesrisuk , Chanadda Sriwipat , Subij Shakya , Pichit Boonkrong
{"title":"银屑病患者生活质量预测的惩罚回归和机器学习方法","authors":"Teerawat Simmachan ,&nbsp;Napatsawan Lerdpraserdpakorn ,&nbsp;Jarupa Deesrisuk ,&nbsp;Chanadda Sriwipat ,&nbsp;Subij Shakya ,&nbsp;Pichit Boonkrong","doi":"10.1016/j.health.2025.100417","DOIUrl":null,"url":null,"abstract":"<div><div>Psoriasis is a chronic inflammatory skin disease that significantly affects patients’ quality of life (QoL), as measured by the Dermatology Life Quality Index (DLQI). This study employs penalized regression and machine learning (ML) techniques to develop predictive models for DLQI in psoriasis patients. Using a dataset of 149 Thai patients, 16 models including multiple linear regression (MLR), five penalized regression models, five Random Forest (RF) models, and five Support Vector Regression (SVR) models were trained. Feature selection was performed using ridge, LASSO, adaptive LASSO, elastic net, and adaptive elastic net to optimize predictive accuracy and interpretability. Results indicate that RF-L1L2, a Random Forest model trained on elastic net-selected features, achieved the best performance with the lowest Root Mean Square Error (RMSE) of 5.6344, and lowest Mean Absolute Pencentage Error (MAPE) of 35.5404, outperforming traditional regression models. Bland–Altman analysis further confirmed the superiority of RF models in reducing systematic bias and improving predictive agreement. However, our findings should be interpreted with caution due to the limitations of small-sample size modeling. Key features included four psychological stress factors, age, Psoriasis Area and Severity Index (PASI), comorbidities and gender, reinforcing the interplay between physical and mental health. SHapley Additive exPlanations (SHAP) was employed in model explainability. Integrating ML models into clinical decision-making, can enhance patient stratification and personalized treatment strategies, with potential applications in AI-driven healthcare solutions.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100417"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A penalized regression and machine learning approach for quality-of-life prediction in psoriasis patients\",\"authors\":\"Teerawat Simmachan ,&nbsp;Napatsawan Lerdpraserdpakorn ,&nbsp;Jarupa Deesrisuk ,&nbsp;Chanadda Sriwipat ,&nbsp;Subij Shakya ,&nbsp;Pichit Boonkrong\",\"doi\":\"10.1016/j.health.2025.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Psoriasis is a chronic inflammatory skin disease that significantly affects patients’ quality of life (QoL), as measured by the Dermatology Life Quality Index (DLQI). This study employs penalized regression and machine learning (ML) techniques to develop predictive models for DLQI in psoriasis patients. Using a dataset of 149 Thai patients, 16 models including multiple linear regression (MLR), five penalized regression models, five Random Forest (RF) models, and five Support Vector Regression (SVR) models were trained. Feature selection was performed using ridge, LASSO, adaptive LASSO, elastic net, and adaptive elastic net to optimize predictive accuracy and interpretability. Results indicate that RF-L1L2, a Random Forest model trained on elastic net-selected features, achieved the best performance with the lowest Root Mean Square Error (RMSE) of 5.6344, and lowest Mean Absolute Pencentage Error (MAPE) of 35.5404, outperforming traditional regression models. Bland–Altman analysis further confirmed the superiority of RF models in reducing systematic bias and improving predictive agreement. However, our findings should be interpreted with caution due to the limitations of small-sample size modeling. Key features included four psychological stress factors, age, Psoriasis Area and Severity Index (PASI), comorbidities and gender, reinforcing the interplay between physical and mental health. SHapley Additive exPlanations (SHAP) was employed in model explainability. Integrating ML models into clinical decision-making, can enhance patient stratification and personalized treatment strategies, with potential applications in AI-driven healthcare solutions.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"8 \",\"pages\":\"Article 100417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277244252500036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277244252500036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

银屑病是一种慢性炎症性皮肤病,通过皮肤病生活质量指数(DLQI)来衡量,银屑病显著影响患者的生活质量(QoL)。本研究采用惩罚回归和机器学习(ML)技术来开发银屑病患者DLQI的预测模型。使用149例泰国患者的数据集,训练了16个模型,包括多元线性回归(MLR)模型、5个惩罚回归模型、5个随机森林(RF)模型和5个支持向量回归(SVR)模型。采用脊线、LASSO、自适应LASSO、弹性网和自适应弹性网进行特征选择,优化预测精度和可解释性。结果表明,基于弹性网络选择特征训练的随机森林模型RF-L1L2表现最佳,其均方根误差(RMSE)最低为5.6344,平均绝对百分误差(MAPE)最低为35.5404,优于传统回归模型。Bland-Altman分析进一步证实了RF模型在减少系统偏差和提高预测一致性方面的优越性。然而,由于小样本量模型的局限性,我们的研究结果应该谨慎解释。主要特征包括年龄、银屑病面积和严重程度指数(PASI)、合并症和性别四种心理压力因素,强化了身心健康之间的相互作用。模型的可解释性采用SHapley加性解释(SHAP)。将ML模型集成到临床决策中,可以增强患者分层和个性化治疗策略,在人工智能驱动的医疗保健解决方案中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A penalized regression and machine learning approach for quality-of-life prediction in psoriasis patients
Psoriasis is a chronic inflammatory skin disease that significantly affects patients’ quality of life (QoL), as measured by the Dermatology Life Quality Index (DLQI). This study employs penalized regression and machine learning (ML) techniques to develop predictive models for DLQI in psoriasis patients. Using a dataset of 149 Thai patients, 16 models including multiple linear regression (MLR), five penalized regression models, five Random Forest (RF) models, and five Support Vector Regression (SVR) models were trained. Feature selection was performed using ridge, LASSO, adaptive LASSO, elastic net, and adaptive elastic net to optimize predictive accuracy and interpretability. Results indicate that RF-L1L2, a Random Forest model trained on elastic net-selected features, achieved the best performance with the lowest Root Mean Square Error (RMSE) of 5.6344, and lowest Mean Absolute Pencentage Error (MAPE) of 35.5404, outperforming traditional regression models. Bland–Altman analysis further confirmed the superiority of RF models in reducing systematic bias and improving predictive agreement. However, our findings should be interpreted with caution due to the limitations of small-sample size modeling. Key features included four psychological stress factors, age, Psoriasis Area and Severity Index (PASI), comorbidities and gender, reinforcing the interplay between physical and mental health. SHapley Additive exPlanations (SHAP) was employed in model explainability. Integrating ML models into clinical decision-making, can enhance patient stratification and personalized treatment strategies, with potential applications in AI-driven healthcare solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信