McKean-Vlasov时间极限的自相互作用逼近:一种马尔可夫链蒙特卡罗方法

IF 2.3 1区 数学 Q1 MATHEMATICS
Kai Du , Zhenjie Ren , Florin Suciu , Songbo Wang
{"title":"McKean-Vlasov时间极限的自相互作用逼近:一种马尔可夫链蒙特卡罗方法","authors":"Kai Du ,&nbsp;Zhenjie Ren ,&nbsp;Florin Suciu ,&nbsp;Songbo Wang","doi":"10.1016/j.matpur.2025.103782","DOIUrl":null,"url":null,"abstract":"<div><div>For a certain class of McKean–Vlasov processes, we introduce proxy processes that substitute the mean-field interaction with self-interaction, employing a weighted occupation measure. Our study encompasses two key achievements. First, we demonstrate the ergodicity of the self-interacting dynamics, under broad conditions, by applying the reflection coupling method. Second, in scenarios where the drifts are negative intrinsic gradients of convex mean-field potential functionals, we use entropy and functional inequalities to demonstrate that the stationary measures of the self-interacting processes approximate the invariant measures of the corresponding McKean–Vlasov processes. As an application, we show how to learn the optimal weights of a two-layer neural network by training a single neuron.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103782"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-interacting approximation to McKean–Vlasov long-time limit: A Markov chain Monte Carlo method\",\"authors\":\"Kai Du ,&nbsp;Zhenjie Ren ,&nbsp;Florin Suciu ,&nbsp;Songbo Wang\",\"doi\":\"10.1016/j.matpur.2025.103782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a certain class of McKean–Vlasov processes, we introduce proxy processes that substitute the mean-field interaction with self-interaction, employing a weighted occupation measure. Our study encompasses two key achievements. First, we demonstrate the ergodicity of the self-interacting dynamics, under broad conditions, by applying the reflection coupling method. Second, in scenarios where the drifts are negative intrinsic gradients of convex mean-field potential functionals, we use entropy and functional inequalities to demonstrate that the stationary measures of the self-interacting processes approximate the invariant measures of the corresponding McKean–Vlasov processes. As an application, we show how to learn the optimal weights of a two-layer neural network by training a single neuron.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103782\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001266\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001266","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一类特定的McKean-Vlasov过程,我们引入了代理过程,该过程采用加权职业度量,用自交互代替平均场交互。我们的研究包括两个主要成果。首先,我们利用反射耦合方法证明了广义条件下自相互作用动力学的遍历性。其次,在漂移为凸平均场势泛函的负本征梯度的情况下,我们使用熵和泛函不等式证明了自相互作用过程的平稳测度近似于相应的McKean-Vlasov过程的不变测度。作为一个应用,我们展示了如何通过训练单个神经元来学习两层神经网络的最优权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-interacting approximation to McKean–Vlasov long-time limit: A Markov chain Monte Carlo method
For a certain class of McKean–Vlasov processes, we introduce proxy processes that substitute the mean-field interaction with self-interaction, employing a weighted occupation measure. Our study encompasses two key achievements. First, we demonstrate the ergodicity of the self-interacting dynamics, under broad conditions, by applying the reflection coupling method. Second, in scenarios where the drifts are negative intrinsic gradients of convex mean-field potential functionals, we use entropy and functional inequalities to demonstrate that the stationary measures of the self-interacting processes approximate the invariant measures of the corresponding McKean–Vlasov processes. As an application, we show how to learn the optimal weights of a two-layer neural network by training a single neuron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信