通过先进的岩心数据增强增强油藏参数预测工作流程

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xin Luo , Xinghua Ci , Jianmeng Sun , Chengyu Dan , Peng Chi , Ruikang Cui
{"title":"通过先进的岩心数据增强增强油藏参数预测工作流程","authors":"Xin Luo ,&nbsp;Xinghua Ci ,&nbsp;Jianmeng Sun ,&nbsp;Chengyu Dan ,&nbsp;Peng Chi ,&nbsp;Ruikang Cui","doi":"10.1016/j.marpetgeo.2025.107605","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning models that rely on core data as dataset labels have become a mainstream method for predicting reservoir parameters. However, the high costs and insufficient spatial sampling density associated with core data acquisition often result in weak nonlinear representation, poor generalization ability, and overfitting in these models. To address limited core data challenges, we propose a reliability analysis-driven workflow that optimally selects multiple core data augmentation (CDA) methods to enhance reservoir parameter prediction. This workflow achieves two primary advancements: Firstly, it mitigates data scarcity by treating core data as a minority class and applying diverse tabular data augmentation techniques to generate and rigorously evaluate reliable synthetic data. This effectively expands the useable core dataset. Secondly, leveraging this augmented data, the workflow integrates machine learning with pre-trained language models (PLMs) to develop and apply multiple combinations of augmentation-prediction models for both lithology classification and physical property parameter prediction. Field data applications demonstrate that the combination of Tabular Denoising Diffusion Probabilistic Model (TabDDPM) and Tabular Prior Data Fitting Network (TabPFN) in CDA achieves outstanding performance in evaluation metrics and case studies for lithology classification and petrophysical parameter prediction. This study provides a reproducible framework for enhancing small-sample reservoir parameter prediction in oil and gas exploration, proving that synthetic data augmentation can effectively mitigate data scarcity and open new pathways for geophysical data analysis.</div></div>","PeriodicalId":18189,"journal":{"name":"Marine and Petroleum Geology","volume":"182 ","pages":"Article 107605"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing reservoir parameter prediction workflows via advanced core data augmentation\",\"authors\":\"Xin Luo ,&nbsp;Xinghua Ci ,&nbsp;Jianmeng Sun ,&nbsp;Chengyu Dan ,&nbsp;Peng Chi ,&nbsp;Ruikang Cui\",\"doi\":\"10.1016/j.marpetgeo.2025.107605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning models that rely on core data as dataset labels have become a mainstream method for predicting reservoir parameters. However, the high costs and insufficient spatial sampling density associated with core data acquisition often result in weak nonlinear representation, poor generalization ability, and overfitting in these models. To address limited core data challenges, we propose a reliability analysis-driven workflow that optimally selects multiple core data augmentation (CDA) methods to enhance reservoir parameter prediction. This workflow achieves two primary advancements: Firstly, it mitigates data scarcity by treating core data as a minority class and applying diverse tabular data augmentation techniques to generate and rigorously evaluate reliable synthetic data. This effectively expands the useable core dataset. Secondly, leveraging this augmented data, the workflow integrates machine learning with pre-trained language models (PLMs) to develop and apply multiple combinations of augmentation-prediction models for both lithology classification and physical property parameter prediction. Field data applications demonstrate that the combination of Tabular Denoising Diffusion Probabilistic Model (TabDDPM) and Tabular Prior Data Fitting Network (TabPFN) in CDA achieves outstanding performance in evaluation metrics and case studies for lithology classification and petrophysical parameter prediction. This study provides a reproducible framework for enhancing small-sample reservoir parameter prediction in oil and gas exploration, proving that synthetic data augmentation can effectively mitigate data scarcity and open new pathways for geophysical data analysis.</div></div>\",\"PeriodicalId\":18189,\"journal\":{\"name\":\"Marine and Petroleum Geology\",\"volume\":\"182 \",\"pages\":\"Article 107605\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264817225003228\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264817225003228","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

依赖于岩心数据作为数据集标签的机器学习模型已经成为预测油藏参数的主流方法。然而,由于岩心数据采集成本高、空间采样密度不足,往往导致这些模型的非线性表示能力弱、泛化能力差、过拟合。为了解决有限的岩心数据挑战,我们提出了一种可靠性分析驱动的工作流程,该工作流程可优化选择多种岩心数据增强(CDA)方法来增强储层参数预测。该工作流实现了两个主要进步:首先,它通过将核心数据视为少数类并应用各种表格数据增强技术来生成和严格评估可靠的合成数据,从而减轻了数据稀缺性。这有效地扩展了可用的核心数据集。其次,利用这些增强数据,工作流将机器学习与预训练语言模型(PLMs)集成在一起,开发和应用多种增强预测模型组合,用于岩性分类和物性参数预测。现场数据应用表明,CDA中的表格去噪扩散概率模型(TabDDPM)与表格先验数据拟合网络(TabPFN)相结合,在岩性分类和岩石物性参数预测的评价指标和案例研究中取得了突出的效果。该研究为加强油气勘探中小样本储层参数预测提供了一个可重复的框架,证明了合成数据增强可以有效缓解数据稀缺,为地球物理数据分析开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing reservoir parameter prediction workflows via advanced core data augmentation
Machine learning models that rely on core data as dataset labels have become a mainstream method for predicting reservoir parameters. However, the high costs and insufficient spatial sampling density associated with core data acquisition often result in weak nonlinear representation, poor generalization ability, and overfitting in these models. To address limited core data challenges, we propose a reliability analysis-driven workflow that optimally selects multiple core data augmentation (CDA) methods to enhance reservoir parameter prediction. This workflow achieves two primary advancements: Firstly, it mitigates data scarcity by treating core data as a minority class and applying diverse tabular data augmentation techniques to generate and rigorously evaluate reliable synthetic data. This effectively expands the useable core dataset. Secondly, leveraging this augmented data, the workflow integrates machine learning with pre-trained language models (PLMs) to develop and apply multiple combinations of augmentation-prediction models for both lithology classification and physical property parameter prediction. Field data applications demonstrate that the combination of Tabular Denoising Diffusion Probabilistic Model (TabDDPM) and Tabular Prior Data Fitting Network (TabPFN) in CDA achieves outstanding performance in evaluation metrics and case studies for lithology classification and petrophysical parameter prediction. This study provides a reproducible framework for enhancing small-sample reservoir parameter prediction in oil and gas exploration, proving that synthetic data augmentation can effectively mitigate data scarcity and open new pathways for geophysical data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine and Petroleum Geology
Marine and Petroleum Geology 地学-地球科学综合
CiteScore
8.80
自引率
14.30%
发文量
475
审稿时长
63 days
期刊介绍: Marine and Petroleum Geology is the pre-eminent international forum for the exchange of multidisciplinary concepts, interpretations and techniques for all concerned with marine and petroleum geology in industry, government and academia. Rapid bimonthly publication allows early communications of papers or short communications to the geoscience community. Marine and Petroleum Geology is essential reading for geologists, geophysicists and explorationists in industry, government and academia working in the following areas: marine geology; basin analysis and evaluation; organic geochemistry; reserve/resource estimation; seismic stratigraphy; thermal models of basic evolution; sedimentary geology; continental margins; geophysical interpretation; structural geology/tectonics; formation evaluation techniques; well logging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信