Mingrui Li , Robin J. Boyd , Chloë Smith , Richard Fox , David Roy , Jonathan Bennie , Richard H. ffrench-Constant
{"title":"作为蝴蝶捕食者的公民科学家:用觅食理论来理解个体记录者的行为","authors":"Mingrui Li , Robin J. Boyd , Chloë Smith , Richard Fox , David Roy , Jonathan Bennie , Richard H. ffrench-Constant","doi":"10.1016/j.ecolmodel.2025.111344","DOIUrl":null,"url":null,"abstract":"<div><div>Citizen science is increasingly important in the collection of biological data. However, to understand the broader utility of the growing number of citizen-derived records, we need to understand exactly how recorder behaviour affects the geographic distribution of records made. Here, we apply an optimal foraging model to citizen science data from the UK to determine how likely a recorder (predator) is to visit any given kilometre square and record a butterfly (prey). By defining the square with the highest density of an individual’s records as their ‘origin’, we show that the probability of visiting a given site depends on its distance from the origin and the rarity-weighted species richness of the species thought to be present. This pattern of behaviour differs between recorders visiting more than or fewer than five squares, termed broad and narrow-range foragers. The model shows that recorder behaviour is driven, in part, by a simple trade-off between distance travelled and the rarity-weighted species richness. This collective behaviour helps explain over-recording by broad-ranging foragers in protected areas at distance and under-recording, by narrow-range foragers, in the wider countryside. It also implies that estimating parameters describing rare species’ distributions (e.g. mean occupancy) will be challenging, since sample inclusion depends on occupancy itself. Mapping rare species’ distributions should be simpler, since the sites at which they can be found tend to be well-sampled, but the same is unlikely to be true of common species, which also occupy areas that are unlikely to be sampled. More work is needed to understand how widely our results can be generalised beyond the UK and the dataset considered.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"510 ","pages":"Article 111344"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citizen scientists as butterfly predators: using foraging theory to understand individual recorder behaviour\",\"authors\":\"Mingrui Li , Robin J. Boyd , Chloë Smith , Richard Fox , David Roy , Jonathan Bennie , Richard H. ffrench-Constant\",\"doi\":\"10.1016/j.ecolmodel.2025.111344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Citizen science is increasingly important in the collection of biological data. However, to understand the broader utility of the growing number of citizen-derived records, we need to understand exactly how recorder behaviour affects the geographic distribution of records made. Here, we apply an optimal foraging model to citizen science data from the UK to determine how likely a recorder (predator) is to visit any given kilometre square and record a butterfly (prey). By defining the square with the highest density of an individual’s records as their ‘origin’, we show that the probability of visiting a given site depends on its distance from the origin and the rarity-weighted species richness of the species thought to be present. This pattern of behaviour differs between recorders visiting more than or fewer than five squares, termed broad and narrow-range foragers. The model shows that recorder behaviour is driven, in part, by a simple trade-off between distance travelled and the rarity-weighted species richness. This collective behaviour helps explain over-recording by broad-ranging foragers in protected areas at distance and under-recording, by narrow-range foragers, in the wider countryside. It also implies that estimating parameters describing rare species’ distributions (e.g. mean occupancy) will be challenging, since sample inclusion depends on occupancy itself. Mapping rare species’ distributions should be simpler, since the sites at which they can be found tend to be well-sampled, but the same is unlikely to be true of common species, which also occupy areas that are unlikely to be sampled. More work is needed to understand how widely our results can be generalised beyond the UK and the dataset considered.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"510 \",\"pages\":\"Article 111344\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380025003308\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025003308","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Citizen scientists as butterfly predators: using foraging theory to understand individual recorder behaviour
Citizen science is increasingly important in the collection of biological data. However, to understand the broader utility of the growing number of citizen-derived records, we need to understand exactly how recorder behaviour affects the geographic distribution of records made. Here, we apply an optimal foraging model to citizen science data from the UK to determine how likely a recorder (predator) is to visit any given kilometre square and record a butterfly (prey). By defining the square with the highest density of an individual’s records as their ‘origin’, we show that the probability of visiting a given site depends on its distance from the origin and the rarity-weighted species richness of the species thought to be present. This pattern of behaviour differs between recorders visiting more than or fewer than five squares, termed broad and narrow-range foragers. The model shows that recorder behaviour is driven, in part, by a simple trade-off between distance travelled and the rarity-weighted species richness. This collective behaviour helps explain over-recording by broad-ranging foragers in protected areas at distance and under-recording, by narrow-range foragers, in the wider countryside. It also implies that estimating parameters describing rare species’ distributions (e.g. mean occupancy) will be challenging, since sample inclusion depends on occupancy itself. Mapping rare species’ distributions should be simpler, since the sites at which they can be found tend to be well-sampled, but the same is unlikely to be true of common species, which also occupy areas that are unlikely to be sampled. More work is needed to understand how widely our results can be generalised beyond the UK and the dataset considered.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).