生物功能化硫纳米颗粒通过维持离子稳态和调节番茄根际细菌群落减轻盐胁迫引起的生理氧化损伤

IF 7.7
Natasha Manzoor , Liaqat Ali , Mingxin Liu , Jiandong Sheng , Gang Wang
{"title":"生物功能化硫纳米颗粒通过维持离子稳态和调节番茄根际细菌群落减轻盐胁迫引起的生理氧化损伤","authors":"Natasha Manzoor ,&nbsp;Liaqat Ali ,&nbsp;Mingxin Liu ,&nbsp;Jiandong Sheng ,&nbsp;Gang Wang","doi":"10.1016/j.plana.2025.100194","DOIUrl":null,"url":null,"abstract":"<div><div>Soil salinization reduces crop yields and threatens agricultural productivity worldwide. This study investigated the potential of biogenically synthesized sulfur nanoparticles (SNPs) using neem leaf extract to mitigate salinity stress in tomato (<em>Solanum lycopersicum</em> L.) plants. The spherical SNPs, ranging 18–30 nm in size, were characterized using UV–visible spectrophotometry, FTIR, XRD, SEM, and TEM analyses. A greenhouse experiment demonstrated that SNPs (200 mg kg⁻¹) significantly improved plant growth (20.3 %), dry weight (33.0 %), and root length (32.0 %) compared to the control. SNPs application enhanced the chlorophyll a (16.9 %) and b (22.1 %), photosynthetic rate (34.0 %), and water use efficiency (44.0 %). SNPs amendments also led to the upregulation of antioxidant enzymes including superoxide dismutase (24.8 %), peroxidase (25.9 %), catalase (30.5 %) and ascorbate peroxidase (80.0 %), consequently reduced ROS activity and oxidative stress compared to plants treated with L-NaCl control. SNPs amendments restored the ionic homeostasis through reduced the Na⁺ accumulation and improved K⁺ uptake. Transmission electron microscopy revealed that SNPs preserved chloroplast integrity and cell membranes under salinity. High-throughput sequencing results showed that SNPs positively modulated rhizosphere microbial communities, enriching beneficial bacteria like <em>Proteobacteria</em> and <em>Thiobacillus</em>. These findings demonstrate that biogenic SNPs offer a sustainable, eco-friendly approach for managing salinity stress in tomato cultivation, enhancing both plant resilience and soil health through improved plant-microbe interactions.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100194"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofunctionalized sulfur nanoparticles alleviate salinity-induced physio-oxidative damage by maintaining ionic homeostasis and modulating rhizosphere bacterial community in tomato\",\"authors\":\"Natasha Manzoor ,&nbsp;Liaqat Ali ,&nbsp;Mingxin Liu ,&nbsp;Jiandong Sheng ,&nbsp;Gang Wang\",\"doi\":\"10.1016/j.plana.2025.100194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil salinization reduces crop yields and threatens agricultural productivity worldwide. This study investigated the potential of biogenically synthesized sulfur nanoparticles (SNPs) using neem leaf extract to mitigate salinity stress in tomato (<em>Solanum lycopersicum</em> L.) plants. The spherical SNPs, ranging 18–30 nm in size, were characterized using UV–visible spectrophotometry, FTIR, XRD, SEM, and TEM analyses. A greenhouse experiment demonstrated that SNPs (200 mg kg⁻¹) significantly improved plant growth (20.3 %), dry weight (33.0 %), and root length (32.0 %) compared to the control. SNPs application enhanced the chlorophyll a (16.9 %) and b (22.1 %), photosynthetic rate (34.0 %), and water use efficiency (44.0 %). SNPs amendments also led to the upregulation of antioxidant enzymes including superoxide dismutase (24.8 %), peroxidase (25.9 %), catalase (30.5 %) and ascorbate peroxidase (80.0 %), consequently reduced ROS activity and oxidative stress compared to plants treated with L-NaCl control. SNPs amendments restored the ionic homeostasis through reduced the Na⁺ accumulation and improved K⁺ uptake. Transmission electron microscopy revealed that SNPs preserved chloroplast integrity and cell membranes under salinity. High-throughput sequencing results showed that SNPs positively modulated rhizosphere microbial communities, enriching beneficial bacteria like <em>Proteobacteria</em> and <em>Thiobacillus</em>. These findings demonstrate that biogenic SNPs offer a sustainable, eco-friendly approach for managing salinity stress in tomato cultivation, enhancing both plant resilience and soil health through improved plant-microbe interactions.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"13 \",\"pages\":\"Article 100194\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111125000610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐碱化降低了作物产量,威胁着全世界的农业生产力。本研究探讨了利用印楝叶提取物生物合成硫纳米颗粒(SNPs)缓解番茄(Solanum lycopersicum L.)盐胁迫的潜力。采用紫外-可见分光光度法、FTIR、XRD、SEM和TEM等方法对SNPs进行了表征。温室实验证明,与对照相比,snp(200 mg kg⁻¹)显著改善了植株生长(20.3 %)、干重(33.0 %)和根长(32.0 %)。单核苷酸多态性提高了叶绿素a(16.9 %)和叶绿素b(22.1 %)、光合速率(34.0 %)和水分利用效率(44.0 %)。snp的修改还导致抗氧化酶的上调,包括超氧化物歧化酶(24.8% %)、过氧化物酶(25.9% %)、过氧化氢酶(30.5% %)和抗坏血酸过氧化物酶(80.0 %),因此与L-NaCl对照相比,ROS活性和氧化胁迫降低。SNPs的修饰通过减少Na⁺的积累和提高K⁺的吸收来恢复离子稳态。透射电镜显示,在盐度条件下,SNPs可以保存叶绿体的完整性和细胞膜。高通量测序结果显示,snp正调节根际微生物群落,丰富有益菌,如变形杆菌和硫杆菌。这些发现表明,生物源性snp提供了一种可持续的、生态友好的方法来管理番茄种植中的盐度胁迫,通过改善植物与微生物的相互作用增强植物的抗逆性和土壤健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofunctionalized sulfur nanoparticles alleviate salinity-induced physio-oxidative damage by maintaining ionic homeostasis and modulating rhizosphere bacterial community in tomato
Soil salinization reduces crop yields and threatens agricultural productivity worldwide. This study investigated the potential of biogenically synthesized sulfur nanoparticles (SNPs) using neem leaf extract to mitigate salinity stress in tomato (Solanum lycopersicum L.) plants. The spherical SNPs, ranging 18–30 nm in size, were characterized using UV–visible spectrophotometry, FTIR, XRD, SEM, and TEM analyses. A greenhouse experiment demonstrated that SNPs (200 mg kg⁻¹) significantly improved plant growth (20.3 %), dry weight (33.0 %), and root length (32.0 %) compared to the control. SNPs application enhanced the chlorophyll a (16.9 %) and b (22.1 %), photosynthetic rate (34.0 %), and water use efficiency (44.0 %). SNPs amendments also led to the upregulation of antioxidant enzymes including superoxide dismutase (24.8 %), peroxidase (25.9 %), catalase (30.5 %) and ascorbate peroxidase (80.0 %), consequently reduced ROS activity and oxidative stress compared to plants treated with L-NaCl control. SNPs amendments restored the ionic homeostasis through reduced the Na⁺ accumulation and improved K⁺ uptake. Transmission electron microscopy revealed that SNPs preserved chloroplast integrity and cell membranes under salinity. High-throughput sequencing results showed that SNPs positively modulated rhizosphere microbial communities, enriching beneficial bacteria like Proteobacteria and Thiobacillus. These findings demonstrate that biogenic SNPs offer a sustainable, eco-friendly approach for managing salinity stress in tomato cultivation, enhancing both plant resilience and soil health through improved plant-microbe interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信