非线性模型标定的贝叶斯优化方法

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Montana N. Carlozo, Ke Wang and Alexander W. Dowling*, 
{"title":"非线性模型标定的贝叶斯优化方法","authors":"Montana N. Carlozo,&nbsp;Ke Wang and Alexander W. Dowling*,&nbsp;","doi":"10.1021/acs.iecr.4c03468","DOIUrl":null,"url":null,"abstract":"<p >This work develops and compares seven Gaussian process Bayesian optimization (GPBO) methods for calibrating nonlinear models. We demonstrate through ten (non)linear parameter estimation examples that new BO methods using GP emulators of (computationally expensive) models accurately recovered parameters in 67% of the benchmarking instances compared to 28% for standard GPBO, which uses GP models for the loss objective. When considering noisy or stochastic expensive models, emulator GPBO finds the true parameters in 62% of the instances compared to approximately 0% for gradient-based nonlinear least-squares. We show that GPBO is more efficient than other popular derivative-free search algorithms, including genetic algorithms, the Nelder–Mead algorithm, or the simplicial homology global optimization algorithm. We recommend emulator GPBO with either an expected improvement Monte Carlo approximation or an expected value of the sum of squared errors acquisition function. Finally, we discuss future opportunities to improve these methods and consider applications to expensive stochastic models (e.g., molecular simulations).</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 37","pages":"18277–18297"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Optimization Methods for Nonlinear Model Calibration\",\"authors\":\"Montana N. Carlozo,&nbsp;Ke Wang and Alexander W. Dowling*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c03468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work develops and compares seven Gaussian process Bayesian optimization (GPBO) methods for calibrating nonlinear models. We demonstrate through ten (non)linear parameter estimation examples that new BO methods using GP emulators of (computationally expensive) models accurately recovered parameters in 67% of the benchmarking instances compared to 28% for standard GPBO, which uses GP models for the loss objective. When considering noisy or stochastic expensive models, emulator GPBO finds the true parameters in 62% of the instances compared to approximately 0% for gradient-based nonlinear least-squares. We show that GPBO is more efficient than other popular derivative-free search algorithms, including genetic algorithms, the Nelder–Mead algorithm, or the simplicial homology global optimization algorithm. We recommend emulator GPBO with either an expected improvement Monte Carlo approximation or an expected value of the sum of squared errors acquisition function. Finally, we discuss future opportunities to improve these methods and consider applications to expensive stochastic models (e.g., molecular simulations).</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 37\",\"pages\":\"18277–18297\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03468\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文发展并比较了七种高斯过程贝叶斯优化(GPBO)方法对非线性模型的校正。我们通过10个(非线性)参数估计示例证明,使用(计算昂贵的)模型的GP模拟器的新BO方法在67%的基准测试实例中准确地恢复了参数,而使用GP模型作为损失目标的标准GPBO则为28%。当考虑噪声或随机昂贵模型时,仿真器GPBO在62%的实例中发现了真实参数,而基于梯度的非线性最小二乘的实例中这一比例约为0%。我们证明GPBO比其他流行的无导数搜索算法更有效,包括遗传算法、Nelder-Mead算法或简单同源全局优化算法。我们推荐模拟器GPBO具有预期的改进蒙特卡罗近似或期望的误差平方和采集函数的值。最后,我们讨论了改进这些方法的未来机会,并考虑将其应用于昂贵的随机模型(例如,分子模拟)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian Optimization Methods for Nonlinear Model Calibration

Bayesian Optimization Methods for Nonlinear Model Calibration

This work develops and compares seven Gaussian process Bayesian optimization (GPBO) methods for calibrating nonlinear models. We demonstrate through ten (non)linear parameter estimation examples that new BO methods using GP emulators of (computationally expensive) models accurately recovered parameters in 67% of the benchmarking instances compared to 28% for standard GPBO, which uses GP models for the loss objective. When considering noisy or stochastic expensive models, emulator GPBO finds the true parameters in 62% of the instances compared to approximately 0% for gradient-based nonlinear least-squares. We show that GPBO is more efficient than other popular derivative-free search algorithms, including genetic algorithms, the Nelder–Mead algorithm, or the simplicial homology global optimization algorithm. We recommend emulator GPBO with either an expected improvement Monte Carlo approximation or an expected value of the sum of squared errors acquisition function. Finally, we discuss future opportunities to improve these methods and consider applications to expensive stochastic models (e.g., molecular simulations).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信