Roi Ram*, Eilon M. Adar, Werner Aeschbach, Michael Bishof, Avihu Burg, Wei Jiang, Zheng-Tian Lu*, Peter Mueller*, Roland Purtschert, Guo-Min Yang, Yoseph Yechieli, Reika Yokochi, Jake C. Zappala and Itay J. Reznik,
{"title":"深沙漠含水层中放射性氪的可重复性:来自十年研究的见解","authors":"Roi Ram*, Eilon M. Adar, Werner Aeschbach, Michael Bishof, Avihu Burg, Wei Jiang, Zheng-Tian Lu*, Peter Mueller*, Roland Purtschert, Guo-Min Yang, Yoseph Yechieli, Reika Yokochi, Jake C. Zappala and Itay J. Reznik, ","doi":"10.1021/acsearthspacechem.5c00121","DOIUrl":null,"url":null,"abstract":"<p >Great technical advances have been achieved since the first atom-trap trace analysis (ATTA) -based radiokrypton application in Egypt, where 1 Myr old groundwater was discovered. Beyond advances in ATTA measurement capabilities, including reduction in sample size, analysis duration, and analytical uncertainty, major progress has been achieved over the past two decades in the sample collection and preparation techniques. These advances paved the expansion of ATTA-based noble gas applications to many other aquifers worldwide, illuminating the nature and flow pattern of deep groundwater systems. While the potential of this new analytical technique for old groundwater dating is well recognized, another important aspect yet to be examined is the reproducibility of radiokrypton in aquifers over time, i.e., how representative is a discrete groundwater sample, collected at a specific time and location, for the natural groundwater system? The likelihood of a negative answer is increased by flow-field disturbance in aquifers following massive groundwater abstraction. Here, we present repeated <sup>81</sup>Kr sampling and measurements in twenty-one sites over Israel, mostly of deep (up to 1 km) wells tapping confined aquifers in the arid to hyperarid Negev desert. The results demonstrate that radiokrypton measurements are indeed reproducible, even in cases where samples were collected as long as nine years apart and from highly productive (∼1 Mm<sup>3</sup>/yr order) pumping wells. Furthermore, many of the repeated measurements in this study (17 out of the 21 sites) were conducted with different ATTA Instruments in two different laboratories using slightly different sampling, preparation, and analysis techniques, yet with an overall good agreement. The consistency in the ATTA-based <sup>81</sup>Kr-dating results over time highlights the robustness of this state-of-the-art technique as a tool to unravel groundwater flow patterns and encourages further applications to many other yet-to-be-explored deep aquifers.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 9","pages":"2215–2221"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of Radiokrypton in Deep Desert Aquifers: Insights from a Decade of Research\",\"authors\":\"Roi Ram*, Eilon M. Adar, Werner Aeschbach, Michael Bishof, Avihu Burg, Wei Jiang, Zheng-Tian Lu*, Peter Mueller*, Roland Purtschert, Guo-Min Yang, Yoseph Yechieli, Reika Yokochi, Jake C. Zappala and Itay J. Reznik, \",\"doi\":\"10.1021/acsearthspacechem.5c00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Great technical advances have been achieved since the first atom-trap trace analysis (ATTA) -based radiokrypton application in Egypt, where 1 Myr old groundwater was discovered. Beyond advances in ATTA measurement capabilities, including reduction in sample size, analysis duration, and analytical uncertainty, major progress has been achieved over the past two decades in the sample collection and preparation techniques. These advances paved the expansion of ATTA-based noble gas applications to many other aquifers worldwide, illuminating the nature and flow pattern of deep groundwater systems. While the potential of this new analytical technique for old groundwater dating is well recognized, another important aspect yet to be examined is the reproducibility of radiokrypton in aquifers over time, i.e., how representative is a discrete groundwater sample, collected at a specific time and location, for the natural groundwater system? The likelihood of a negative answer is increased by flow-field disturbance in aquifers following massive groundwater abstraction. Here, we present repeated <sup>81</sup>Kr sampling and measurements in twenty-one sites over Israel, mostly of deep (up to 1 km) wells tapping confined aquifers in the arid to hyperarid Negev desert. The results demonstrate that radiokrypton measurements are indeed reproducible, even in cases where samples were collected as long as nine years apart and from highly productive (∼1 Mm<sup>3</sup>/yr order) pumping wells. Furthermore, many of the repeated measurements in this study (17 out of the 21 sites) were conducted with different ATTA Instruments in two different laboratories using slightly different sampling, preparation, and analysis techniques, yet with an overall good agreement. The consistency in the ATTA-based <sup>81</sup>Kr-dating results over time highlights the robustness of this state-of-the-art technique as a tool to unravel groundwater flow patterns and encourages further applications to many other yet-to-be-explored deep aquifers.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"9 9\",\"pages\":\"2215–2221\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.5c00121\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.5c00121","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reproducibility of Radiokrypton in Deep Desert Aquifers: Insights from a Decade of Research
Great technical advances have been achieved since the first atom-trap trace analysis (ATTA) -based radiokrypton application in Egypt, where 1 Myr old groundwater was discovered. Beyond advances in ATTA measurement capabilities, including reduction in sample size, analysis duration, and analytical uncertainty, major progress has been achieved over the past two decades in the sample collection and preparation techniques. These advances paved the expansion of ATTA-based noble gas applications to many other aquifers worldwide, illuminating the nature and flow pattern of deep groundwater systems. While the potential of this new analytical technique for old groundwater dating is well recognized, another important aspect yet to be examined is the reproducibility of radiokrypton in aquifers over time, i.e., how representative is a discrete groundwater sample, collected at a specific time and location, for the natural groundwater system? The likelihood of a negative answer is increased by flow-field disturbance in aquifers following massive groundwater abstraction. Here, we present repeated 81Kr sampling and measurements in twenty-one sites over Israel, mostly of deep (up to 1 km) wells tapping confined aquifers in the arid to hyperarid Negev desert. The results demonstrate that radiokrypton measurements are indeed reproducible, even in cases where samples were collected as long as nine years apart and from highly productive (∼1 Mm3/yr order) pumping wells. Furthermore, many of the repeated measurements in this study (17 out of the 21 sites) were conducted with different ATTA Instruments in two different laboratories using slightly different sampling, preparation, and analysis techniques, yet with an overall good agreement. The consistency in the ATTA-based 81Kr-dating results over time highlights the robustness of this state-of-the-art technique as a tool to unravel groundwater flow patterns and encourages further applications to many other yet-to-be-explored deep aquifers.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.