室温下金在二硫化钼上的大周期范德华外延:纳米电子学的莫伊兰工程界面

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu-Che Huang, Liang-Ching He, Kuan-Yu Yeh, Kuan-Bo Lin, Hui-Ting Liu, Shang-Jui Chiu, Yan-Gu Lin, Yi-Wei Tsai, Jhih-Min Lin, Sen-Hao Chang, Tsung-Mu Wu, Kris Ke-Hsien Lin, Shin-Yuan Wang, Chao-Hsin Chien, Chun-Liang Lin, Shu-Jui Chang*, Edward Yi Chang* and Chenming Hu*, 
{"title":"室温下金在二硫化钼上的大周期范德华外延:纳米电子学的莫伊兰工程界面","authors":"Yu-Che Huang,&nbsp;Liang-Ching He,&nbsp;Kuan-Yu Yeh,&nbsp;Kuan-Bo Lin,&nbsp;Hui-Ting Liu,&nbsp;Shang-Jui Chiu,&nbsp;Yan-Gu Lin,&nbsp;Yi-Wei Tsai,&nbsp;Jhih-Min Lin,&nbsp;Sen-Hao Chang,&nbsp;Tsung-Mu Wu,&nbsp;Kris Ke-Hsien Lin,&nbsp;Shin-Yuan Wang,&nbsp;Chao-Hsin Chien,&nbsp;Chun-Liang Lin,&nbsp;Shu-Jui Chang*,&nbsp;Edward Yi Chang* and Chenming Hu*,&nbsp;","doi":"10.1021/acsanm.5c03991","DOIUrl":null,"url":null,"abstract":"<p >The continuous miniaturization of integrated circuits has driven interest in two-dimensional (2D) transition metal dichalcogenides (TMDs) as atomically thin semiconductors with exceptional electronic properties and substrate compatibility. In this study, we investigate the room temperature epitaxial growth of ultrathin gold (Au) films on monolayer molybdenum disulfide (MoS<sub>2</sub>), focusing on the nanoscale structural evolution at the metal–TMD interface. In the initial stages of Au epitaxy, epitaxial Au grains and MoS<sub>2</sub> appear as moiré patterns with varying orientations. As growth progresses, these patterns converge into a dominant (12Au–11MoS<sub>2</sub>) moiré pattern, forming a continuous epitaxial Au film with a lattice mismatch of only 0.6% with MoS<sub>2</sub>. Analysis of the Au/MoS<sub>2</sub> interface reveals that large-period epitaxy induces an ∼0.6° tilt in the Au crystal planes. Density functional theory (DFT) calculations further demonstrate how local interfacial modifications contribute to lattice misalignment and strain distribution. These results provide atomic-scale insight into the strain accommodation and crystalline alignment mechanisms at 3D/2D interfaces, highlighting how low-temperature metal epitaxy on 2D semiconductors can enable structurally coherent and cleaner interfaces. This approach offers a promising pathway for engineering low-resistance metal contacts in next-generation nanoscale transistors and other 2D semiconductor-based devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 37","pages":"18208–18215"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c03991","citationCount":"0","resultStr":"{\"title\":\"Large-Period van der Waals Epitaxy of Au on MoS2 at Room Temperature: Moiré-Engineered Interfaces for Nanoelectronics\",\"authors\":\"Yu-Che Huang,&nbsp;Liang-Ching He,&nbsp;Kuan-Yu Yeh,&nbsp;Kuan-Bo Lin,&nbsp;Hui-Ting Liu,&nbsp;Shang-Jui Chiu,&nbsp;Yan-Gu Lin,&nbsp;Yi-Wei Tsai,&nbsp;Jhih-Min Lin,&nbsp;Sen-Hao Chang,&nbsp;Tsung-Mu Wu,&nbsp;Kris Ke-Hsien Lin,&nbsp;Shin-Yuan Wang,&nbsp;Chao-Hsin Chien,&nbsp;Chun-Liang Lin,&nbsp;Shu-Jui Chang*,&nbsp;Edward Yi Chang* and Chenming Hu*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The continuous miniaturization of integrated circuits has driven interest in two-dimensional (2D) transition metal dichalcogenides (TMDs) as atomically thin semiconductors with exceptional electronic properties and substrate compatibility. In this study, we investigate the room temperature epitaxial growth of ultrathin gold (Au) films on monolayer molybdenum disulfide (MoS<sub>2</sub>), focusing on the nanoscale structural evolution at the metal–TMD interface. In the initial stages of Au epitaxy, epitaxial Au grains and MoS<sub>2</sub> appear as moiré patterns with varying orientations. As growth progresses, these patterns converge into a dominant (12Au–11MoS<sub>2</sub>) moiré pattern, forming a continuous epitaxial Au film with a lattice mismatch of only 0.6% with MoS<sub>2</sub>. Analysis of the Au/MoS<sub>2</sub> interface reveals that large-period epitaxy induces an ∼0.6° tilt in the Au crystal planes. Density functional theory (DFT) calculations further demonstrate how local interfacial modifications contribute to lattice misalignment and strain distribution. These results provide atomic-scale insight into the strain accommodation and crystalline alignment mechanisms at 3D/2D interfaces, highlighting how low-temperature metal epitaxy on 2D semiconductors can enable structurally coherent and cleaner interfaces. This approach offers a promising pathway for engineering low-resistance metal contacts in next-generation nanoscale transistors and other 2D semiconductor-based devices.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 37\",\"pages\":\"18208–18215\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c03991\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03991\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03991","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

集成电路的持续小型化推动了人们对二维(2D)过渡金属二硫族化合物(TMDs)作为具有优异电子性能和衬底兼容性的原子薄半导体的兴趣。在这项研究中,我们研究了超薄金(Au)薄膜在单层二硫化钼(MoS2)上的室温外延生长,重点研究了金属- tmd界面的纳米级结构演变。在Au外延的初始阶段,外延的Au晶粒和MoS2呈现出不同取向的波纹状。随着生长的进行,这些模式会聚集成一个主导的(12Au-11MoS2)莫尔条纹模式,形成一个连续的外延Au薄膜,与MoS2的晶格失配仅为0.6%。对Au/MoS2界面的分析表明,大周期外延导致Au晶面倾斜约0.6°。密度泛函理论(DFT)计算进一步证明了局部界面修饰如何导致晶格错位和应变分布。这些结果为三维/二维界面的应变调节和晶体取向机制提供了原子尺度的见解,突出了二维半导体上的低温金属外延如何实现结构上的相干和更清洁的界面。这种方法为下一代纳米级晶体管和其他二维半导体器件的低电阻金属触点工程提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Period van der Waals Epitaxy of Au on MoS2 at Room Temperature: Moiré-Engineered Interfaces for Nanoelectronics

The continuous miniaturization of integrated circuits has driven interest in two-dimensional (2D) transition metal dichalcogenides (TMDs) as atomically thin semiconductors with exceptional electronic properties and substrate compatibility. In this study, we investigate the room temperature epitaxial growth of ultrathin gold (Au) films on monolayer molybdenum disulfide (MoS2), focusing on the nanoscale structural evolution at the metal–TMD interface. In the initial stages of Au epitaxy, epitaxial Au grains and MoS2 appear as moiré patterns with varying orientations. As growth progresses, these patterns converge into a dominant (12Au–11MoS2) moiré pattern, forming a continuous epitaxial Au film with a lattice mismatch of only 0.6% with MoS2. Analysis of the Au/MoS2 interface reveals that large-period epitaxy induces an ∼0.6° tilt in the Au crystal planes. Density functional theory (DFT) calculations further demonstrate how local interfacial modifications contribute to lattice misalignment and strain distribution. These results provide atomic-scale insight into the strain accommodation and crystalline alignment mechanisms at 3D/2D interfaces, highlighting how low-temperature metal epitaxy on 2D semiconductors can enable structurally coherent and cleaner interfaces. This approach offers a promising pathway for engineering low-resistance metal contacts in next-generation nanoscale transistors and other 2D semiconductor-based devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信