通过食物垃圾和工业污泥消化的系统级评估推进循环生物经济

IF 7.7 Q1 ENGINEERING, ENVIRONMENTAL
Md. Nizam Uddin, Cassidy Hartog, Emma Murray, Jacob B. Loveless, Lukas Roberson, Asli Aslan, Francisco Cubas and Lewis S. Rowles*, 
{"title":"通过食物垃圾和工业污泥消化的系统级评估推进循环生物经济","authors":"Md. Nizam Uddin,&nbsp;Cassidy Hartog,&nbsp;Emma Murray,&nbsp;Jacob B. Loveless,&nbsp;Lukas Roberson,&nbsp;Asli Aslan,&nbsp;Francisco Cubas and Lewis S. Rowles*,&nbsp;","doi":"10.1021/acsenvironau.5c00049","DOIUrl":null,"url":null,"abstract":"<p >Disposal of food waste (FW) in landfills remains an unsustainable practice for organic waste management. Simultaneously, pulp and paper mills produce significant amounts of recalcitrant organic waste that is difficult to decompose due to its high lignocellulosic content. In this study, we developed an innovative approach to improve the digestion of pulp and paper mill sludge (PPMS) by amending FW to produce a low chemical oxygen demand (COD) sludge while recovering methane in the process. This codigestion process was evaluated through lab-scale biogas production experiments coupled with a comprehensive economic and environmental sustainability assessment. Biomethane production results revealed that the FW-PPMS codigestion methane yield was 36% higher on average than the PPMS monodigestion. Additionally, metagenomic analysis revealed that microbial communities for both systems transitioned from highly heterogeneous to more adapted uniform communities after digestion. Improved microbial communities contributed to higher COD removal (92%) in the FW-PPMS system compared to monodigestion (80% removal). The sustainability analysis revealed that the codigestion of FW-PPMS had median costs of 236.64 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 228.30 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>, a significant reduction compared to directly disposing the FW in landfills (median costs of 405.13 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 556.27 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>). A nationwide contextual analysis revealed that out of six regions, the US Northeast had the lowest median costs and emissions, while the Mountain Plains region had the highest, highlighting the importance of geographical and infrastructural factors in implementation. Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"479–489"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00049","citationCount":"0","resultStr":"{\"title\":\"Advancing Circular Bioeconomy through a Systems-Level Assessment of Food Waste and Industrial Sludge Codigestion\",\"authors\":\"Md. Nizam Uddin,&nbsp;Cassidy Hartog,&nbsp;Emma Murray,&nbsp;Jacob B. Loveless,&nbsp;Lukas Roberson,&nbsp;Asli Aslan,&nbsp;Francisco Cubas and Lewis S. Rowles*,&nbsp;\",\"doi\":\"10.1021/acsenvironau.5c00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Disposal of food waste (FW) in landfills remains an unsustainable practice for organic waste management. Simultaneously, pulp and paper mills produce significant amounts of recalcitrant organic waste that is difficult to decompose due to its high lignocellulosic content. In this study, we developed an innovative approach to improve the digestion of pulp and paper mill sludge (PPMS) by amending FW to produce a low chemical oxygen demand (COD) sludge while recovering methane in the process. This codigestion process was evaluated through lab-scale biogas production experiments coupled with a comprehensive economic and environmental sustainability assessment. Biomethane production results revealed that the FW-PPMS codigestion methane yield was 36% higher on average than the PPMS monodigestion. Additionally, metagenomic analysis revealed that microbial communities for both systems transitioned from highly heterogeneous to more adapted uniform communities after digestion. Improved microbial communities contributed to higher COD removal (92%) in the FW-PPMS system compared to monodigestion (80% removal). The sustainability analysis revealed that the codigestion of FW-PPMS had median costs of 236.64 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 228.30 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>, a significant reduction compared to directly disposing the FW in landfills (median costs of 405.13 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 556.27 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>). A nationwide contextual analysis revealed that out of six regions, the US Northeast had the lowest median costs and emissions, while the Mountain Plains region had the highest, highlighting the importance of geographical and infrastructural factors in implementation. Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"5 5\",\"pages\":\"479–489\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.5c00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.5c00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在堆填区处置食物废物仍然是有机废物管理的不可持续做法。同时,纸浆和造纸厂产生大量难降解的有机废物,由于其高木质纤维素含量而难以分解。在这项研究中,我们开发了一种创新的方法来改善纸浆和造纸厂污泥(PPMS)的消化,通过修改FW产生低化学需氧量(COD)污泥,同时回收甲烷。通过实验室规模的沼气生产实验以及综合的经济和环境可持续性评估来评估这种共消化过程。生物甲烷产率结果表明,FW-PPMS共消化法的甲烷产率比PPMS单消化法平均高36%。此外,宏基因组分析显示,这两个系统的微生物群落在消化后从高度异质转变为更适应的均匀群落。与单消化(80%)相比,改良的微生物群落有助于FW-PPMS系统中更高的COD去除率(92%)。可持续性分析表明,与直接填埋垃圾(平均成本为405.13美元·吨- 1·日,平均排放量为556.27公斤·吨- 1·日)相比,共消化FW- ppms的成本中位数为236.64美元·吨- 1·日- 1,排放量为228.30公斤·吨- 1·日- 1,显著降低。一项全国性的背景分析显示,在六个地区中,美国东北部的中位数成本和排放量最低,而山地平原地区的中位数成本和排放量最高,这凸显了地理和基础设施因素在实施中的重要性。总的来说,用PPMS消化FW是一种可持续的废物管理选择,可以减少有价值的有机废物的填埋处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Circular Bioeconomy through a Systems-Level Assessment of Food Waste and Industrial Sludge Codigestion

Disposal of food waste (FW) in landfills remains an unsustainable practice for organic waste management. Simultaneously, pulp and paper mills produce significant amounts of recalcitrant organic waste that is difficult to decompose due to its high lignocellulosic content. In this study, we developed an innovative approach to improve the digestion of pulp and paper mill sludge (PPMS) by amending FW to produce a low chemical oxygen demand (COD) sludge while recovering methane in the process. This codigestion process was evaluated through lab-scale biogas production experiments coupled with a comprehensive economic and environmental sustainability assessment. Biomethane production results revealed that the FW-PPMS codigestion methane yield was 36% higher on average than the PPMS monodigestion. Additionally, metagenomic analysis revealed that microbial communities for both systems transitioned from highly heterogeneous to more adapted uniform communities after digestion. Improved microbial communities contributed to higher COD removal (92%) in the FW-PPMS system compared to monodigestion (80% removal). The sustainability analysis revealed that the codigestion of FW-PPMS had median costs of 236.64 USD·tonne–1·day–1 and emissions of 228.30 kg CO2 eq·tonne–1·day–1, a significant reduction compared to directly disposing the FW in landfills (median costs of 405.13 USD·tonne–1·day–1 and emissions of 556.27 kg CO2 eq·tonne–1·day–1). A nationwide contextual analysis revealed that out of six regions, the US Northeast had the lowest median costs and emissions, while the Mountain Plains region had the highest, highlighting the importance of geographical and infrastructural factors in implementation. Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Environmental Au
ACS Environmental Au 环境科学-
CiteScore
7.10
自引率
0.00%
发文量
0
期刊介绍: ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信