用于无蚀刻铌酸锂薄膜可扩展和鲁棒光学模式操作的元波导

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingrui Yuan, Xudong Zhou, Yongheng Jiang, Xiaoyue Ma, Huifu Xiao, Mei Xian Low, Aditya Dubey, Thach Giang Nguyen, Guanghui Ren, Arnan Mitchell and Yonghui Tian*, 
{"title":"用于无蚀刻铌酸锂薄膜可扩展和鲁棒光学模式操作的元波导","authors":"Mingrui Yuan,&nbsp;Xudong Zhou,&nbsp;Yongheng Jiang,&nbsp;Xiaoyue Ma,&nbsp;Huifu Xiao,&nbsp;Mei Xian Low,&nbsp;Aditya Dubey,&nbsp;Thach Giang Nguyen,&nbsp;Guanghui Ren,&nbsp;Arnan Mitchell and Yonghui Tian*,&nbsp;","doi":"10.1021/acsphotonics.5c01470","DOIUrl":null,"url":null,"abstract":"<p >Meta-waveguides are a novel type of integrated optical waveguide structure that can enable refractive index manipulation by engineering photonic structures at subwavelength scales. Such meta-waveguides offer the advantage of providing flexible and highly customizable manipulation over multidimensional optical fields. Meta-waveguide-based optical mode manipulation technologies can control the spatial dimensions in optical waveguides. In contrast to traditional design strategies that are specific to certain mode orders, meta-waveguide-based technologies overcome the inherent limitations of mode order, offering more flexible scalability and robustness. Recently, a thin-film lithium niobate (TFLN) platform with its unique electro-optic properties and low material loss becomes an ideal choice for constructing integrated optoelectronic chips. By leveraging the lithium niobate’s etchless approach, meta-waveguides based on the TFLN platform enable innovative optical mode processing paradigms, significantly enhancing the transmission capabilities of optical communication systems. Here, we report a scalable on-chip optical mode manipulation system that utilizes the flexible refractive index distribution of meta-waveguides to excite arbitrary high-order optical modes. As a proof of concept, a 6-channel optical mode multiplexer is designed and experimentally demonstrated, which achieves low insertion loss (&lt;1.9 dB) and crosstalk (&lt;−19 dB) at 1550 nm, while exhibiting enhanced fabrication tolerance. This demonstration alleviates the scalability limitations in mode scalability for TFLN photonic devices, addressing the capacity bottleneck issues in optical signal processing, optical interconnects, and brain-inspired photonic computing.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 9","pages":"5271–5282"},"PeriodicalIF":6.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Waveguides for Scalable and Robust Optical Mode Manipulation on Etchless Thin Film Lithium Niobate\",\"authors\":\"Mingrui Yuan,&nbsp;Xudong Zhou,&nbsp;Yongheng Jiang,&nbsp;Xiaoyue Ma,&nbsp;Huifu Xiao,&nbsp;Mei Xian Low,&nbsp;Aditya Dubey,&nbsp;Thach Giang Nguyen,&nbsp;Guanghui Ren,&nbsp;Arnan Mitchell and Yonghui Tian*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Meta-waveguides are a novel type of integrated optical waveguide structure that can enable refractive index manipulation by engineering photonic structures at subwavelength scales. Such meta-waveguides offer the advantage of providing flexible and highly customizable manipulation over multidimensional optical fields. Meta-waveguide-based optical mode manipulation technologies can control the spatial dimensions in optical waveguides. In contrast to traditional design strategies that are specific to certain mode orders, meta-waveguide-based technologies overcome the inherent limitations of mode order, offering more flexible scalability and robustness. Recently, a thin-film lithium niobate (TFLN) platform with its unique electro-optic properties and low material loss becomes an ideal choice for constructing integrated optoelectronic chips. By leveraging the lithium niobate’s etchless approach, meta-waveguides based on the TFLN platform enable innovative optical mode processing paradigms, significantly enhancing the transmission capabilities of optical communication systems. Here, we report a scalable on-chip optical mode manipulation system that utilizes the flexible refractive index distribution of meta-waveguides to excite arbitrary high-order optical modes. As a proof of concept, a 6-channel optical mode multiplexer is designed and experimentally demonstrated, which achieves low insertion loss (&lt;1.9 dB) and crosstalk (&lt;−19 dB) at 1550 nm, while exhibiting enhanced fabrication tolerance. This demonstration alleviates the scalability limitations in mode scalability for TFLN photonic devices, addressing the capacity bottleneck issues in optical signal processing, optical interconnects, and brain-inspired photonic computing.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 9\",\"pages\":\"5271–5282\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01470\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01470","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

元波导是一种新型的集成光波导结构,可以在亚波长尺度上通过工程光子结构来控制折射率。这种元波导提供了在多维光场上提供灵活和高度可定制操作的优势。基于元波导的光模操纵技术可以控制光波导的空间尺寸。与针对特定模式阶数的传统设计策略相比,基于元波导的技术克服了模式阶数的固有限制,提供了更灵活的可扩展性和鲁棒性。近年来,薄膜铌酸锂(TFLN)平台以其独特的电光特性和低材料损耗成为构建集成光电芯片的理想选择。通过利用铌酸锂的无蚀刻方法,基于TFLN平台的元波导实现了创新的光模式处理范式,显著增强了光通信系统的传输能力。在这里,我们报告了一种可扩展的片上光模式操纵系统,该系统利用元波导的柔性折射率分布来激发任意高阶光模式。作为概念验证,设计并实验验证了一种6通道光模复用器,该复用器在1550 nm处实现了低插入损耗(<1.9 dB)和串扰(<−19 dB),同时具有增强的制造公差。该演示缓解了TFLN光子器件模式可扩展性的限制,解决了光信号处理、光互连和脑启发光子计算中的容量瓶颈问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Meta-Waveguides for Scalable and Robust Optical Mode Manipulation on Etchless Thin Film Lithium Niobate

Meta-Waveguides for Scalable and Robust Optical Mode Manipulation on Etchless Thin Film Lithium Niobate

Meta-waveguides are a novel type of integrated optical waveguide structure that can enable refractive index manipulation by engineering photonic structures at subwavelength scales. Such meta-waveguides offer the advantage of providing flexible and highly customizable manipulation over multidimensional optical fields. Meta-waveguide-based optical mode manipulation technologies can control the spatial dimensions in optical waveguides. In contrast to traditional design strategies that are specific to certain mode orders, meta-waveguide-based technologies overcome the inherent limitations of mode order, offering more flexible scalability and robustness. Recently, a thin-film lithium niobate (TFLN) platform with its unique electro-optic properties and low material loss becomes an ideal choice for constructing integrated optoelectronic chips. By leveraging the lithium niobate’s etchless approach, meta-waveguides based on the TFLN platform enable innovative optical mode processing paradigms, significantly enhancing the transmission capabilities of optical communication systems. Here, we report a scalable on-chip optical mode manipulation system that utilizes the flexible refractive index distribution of meta-waveguides to excite arbitrary high-order optical modes. As a proof of concept, a 6-channel optical mode multiplexer is designed and experimentally demonstrated, which achieves low insertion loss (<1.9 dB) and crosstalk (<−19 dB) at 1550 nm, while exhibiting enhanced fabrication tolerance. This demonstration alleviates the scalability limitations in mode scalability for TFLN photonic devices, addressing the capacity bottleneck issues in optical signal processing, optical interconnects, and brain-inspired photonic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信