{"title":"常规和过硫酸盐氧化泡沫在空气喷射法修复三氯乙烯致密非水相液中的比较评价","authors":"Xuyen Thi Hong Luong, and , Chenju Liang*, ","doi":"10.1021/acsenvironau.5c00046","DOIUrl":null,"url":null,"abstract":"<p >This study investigated the feasibility of foam-enhanced air sparging (FEAS) for remediating trichloroethylene (TCE) dense nonaqueous phase liquid (DNAPL) in water. Various surfactants, including polyoxyethylene (20) sorbitan monooleate (TW80), sodium dodecyl sulfate (SDS), sodium α-olefin sulfonate (AOS), and TW80/SDS and TW80/AOS combinations, were used to generate foam, which were evaluated for foam stability and quality. AOS (32 mM) exhibited the highest foam stability (∼345 min) and quality (∼99.6%) under controlled conditions. Phase contrast microscopy analysis showed foam sizes of 290–400 μm with thin film thicknesses of 6–9 μm. FEAS was tested with and without sodium persulfate (SPS) oxidant (oxidative foam) to treat approximately 10 g of TCE DNAPL in 1 L of water. Injecting AOS foam (32 mM) or oxidative foam AOS (32 mM)/SPS (50 or 1700 mM) for 2 h dissolved 60–82% of TCE, compared to only 4–7% with N<sub>2</sub> injection. The surfactant-stabilized interface in foam facilitated TCE adsorption, increasing its partitioning into bubbles, leading to enhanced volatilization. In the lamella region, surfactant layers promoted TCE dissolution, while SPS aided its mineralization. With oxidative foam at a higher SPS concentration (1700 mM) and an extended reaction time (240 h), TCE mineralization increased to 40–74% across different foam injection rates. These results highlight oxidative FEAS as a promising improvement over conventional air sparging, significantly enhancing TCE dissolution, volatilization, and oxidation.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"468–478"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00046","citationCount":"0","resultStr":"{\"title\":\"Comparative Assessment of Regular and Persulfate Oxidative Foams in Air Sparging for Trichloroethylene Dense Nonaqueous Phase Liquid Remediation\",\"authors\":\"Xuyen Thi Hong Luong, and , Chenju Liang*, \",\"doi\":\"10.1021/acsenvironau.5c00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigated the feasibility of foam-enhanced air sparging (FEAS) for remediating trichloroethylene (TCE) dense nonaqueous phase liquid (DNAPL) in water. Various surfactants, including polyoxyethylene (20) sorbitan monooleate (TW80), sodium dodecyl sulfate (SDS), sodium α-olefin sulfonate (AOS), and TW80/SDS and TW80/AOS combinations, were used to generate foam, which were evaluated for foam stability and quality. AOS (32 mM) exhibited the highest foam stability (∼345 min) and quality (∼99.6%) under controlled conditions. Phase contrast microscopy analysis showed foam sizes of 290–400 μm with thin film thicknesses of 6–9 μm. FEAS was tested with and without sodium persulfate (SPS) oxidant (oxidative foam) to treat approximately 10 g of TCE DNAPL in 1 L of water. Injecting AOS foam (32 mM) or oxidative foam AOS (32 mM)/SPS (50 or 1700 mM) for 2 h dissolved 60–82% of TCE, compared to only 4–7% with N<sub>2</sub> injection. The surfactant-stabilized interface in foam facilitated TCE adsorption, increasing its partitioning into bubbles, leading to enhanced volatilization. In the lamella region, surfactant layers promoted TCE dissolution, while SPS aided its mineralization. With oxidative foam at a higher SPS concentration (1700 mM) and an extended reaction time (240 h), TCE mineralization increased to 40–74% across different foam injection rates. These results highlight oxidative FEAS as a promising improvement over conventional air sparging, significantly enhancing TCE dissolution, volatilization, and oxidation.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"5 5\",\"pages\":\"468–478\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.5c00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.5c00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Comparative Assessment of Regular and Persulfate Oxidative Foams in Air Sparging for Trichloroethylene Dense Nonaqueous Phase Liquid Remediation
This study investigated the feasibility of foam-enhanced air sparging (FEAS) for remediating trichloroethylene (TCE) dense nonaqueous phase liquid (DNAPL) in water. Various surfactants, including polyoxyethylene (20) sorbitan monooleate (TW80), sodium dodecyl sulfate (SDS), sodium α-olefin sulfonate (AOS), and TW80/SDS and TW80/AOS combinations, were used to generate foam, which were evaluated for foam stability and quality. AOS (32 mM) exhibited the highest foam stability (∼345 min) and quality (∼99.6%) under controlled conditions. Phase contrast microscopy analysis showed foam sizes of 290–400 μm with thin film thicknesses of 6–9 μm. FEAS was tested with and without sodium persulfate (SPS) oxidant (oxidative foam) to treat approximately 10 g of TCE DNAPL in 1 L of water. Injecting AOS foam (32 mM) or oxidative foam AOS (32 mM)/SPS (50 or 1700 mM) for 2 h dissolved 60–82% of TCE, compared to only 4–7% with N2 injection. The surfactant-stabilized interface in foam facilitated TCE adsorption, increasing its partitioning into bubbles, leading to enhanced volatilization. In the lamella region, surfactant layers promoted TCE dissolution, while SPS aided its mineralization. With oxidative foam at a higher SPS concentration (1700 mM) and an extended reaction time (240 h), TCE mineralization increased to 40–74% across different foam injection rates. These results highlight oxidative FEAS as a promising improvement over conventional air sparging, significantly enhancing TCE dissolution, volatilization, and oxidation.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management