碳量子点修饰纳米多孔BiVO4用于高效光电化学水分解

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Peng, Xiaoxuan Zhao, Chunmei Li, Duo Zhang, Nan Zhou, Yuting Zhou, Shoubing Ding*, Zhimin Wu* and Yuli Xiong*, 
{"title":"碳量子点修饰纳米多孔BiVO4用于高效光电化学水分解","authors":"Bo Peng,&nbsp;Xiaoxuan Zhao,&nbsp;Chunmei Li,&nbsp;Duo Zhang,&nbsp;Nan Zhou,&nbsp;Yuting Zhou,&nbsp;Shoubing Ding*,&nbsp;Zhimin Wu* and Yuli Xiong*,&nbsp;","doi":"10.1021/acsanm.5c03481","DOIUrl":null,"url":null,"abstract":"<p >The sluggish kinetics of oxygen evolution is widely recognized as one of the major challenges in developing a BiVO<sub>4</sub>-based photoanode. To address this intrinsic limitation, we present an integrated photoanode composed of nanoporous BiVO<sub>4</sub> decorated with 5 nm carbon quantum dots (CQDs). The CQDs function as an efficient hole transfer layer due to their lower surface potential, creating an outward interfacial built-in electric field with the higher surface potential of bulk BiVO<sub>4</sub>. This electric field is capable of driving photogenerated holes to the CQDs’ surface for efficient water oxidation. The CQDs-BiVO<sub>4</sub> demonstrates an improved photocurrent of 2.7 mA cm<sup>–2</sup> at 1.23 V vs RHE under simulated sunlight, which is approximately 3.0 times higher than that of pristine BiVO<sub>4</sub>. The nanoporous CQDs-BiVO<sub>4</sub> also achieves an enhanced surface charge transfer efficiency of 45.8% and a shorter electron transport time of 0.23 ms at a flow rate of 300 W m<sup>–2</sup>. Time-resolved photoluminescence analysis reveals that a longer lifetime is achieved (τ<sub>1</sub> = 3.7 ns and τ<sub>2</sub> = 49.0 ns) for CQDs-BiVO<sub>4</sub>, confirming that the reduced electron–hole recombination is beneficial for bulk charge transfer.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 37","pages":"18174–18182"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoporous BiVO4 Decorated with Carbon Quantum Dots for Efficient Photoelectrochemical Water Splitting\",\"authors\":\"Bo Peng,&nbsp;Xiaoxuan Zhao,&nbsp;Chunmei Li,&nbsp;Duo Zhang,&nbsp;Nan Zhou,&nbsp;Yuting Zhou,&nbsp;Shoubing Ding*,&nbsp;Zhimin Wu* and Yuli Xiong*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sluggish kinetics of oxygen evolution is widely recognized as one of the major challenges in developing a BiVO<sub>4</sub>-based photoanode. To address this intrinsic limitation, we present an integrated photoanode composed of nanoporous BiVO<sub>4</sub> decorated with 5 nm carbon quantum dots (CQDs). The CQDs function as an efficient hole transfer layer due to their lower surface potential, creating an outward interfacial built-in electric field with the higher surface potential of bulk BiVO<sub>4</sub>. This electric field is capable of driving photogenerated holes to the CQDs’ surface for efficient water oxidation. The CQDs-BiVO<sub>4</sub> demonstrates an improved photocurrent of 2.7 mA cm<sup>–2</sup> at 1.23 V vs RHE under simulated sunlight, which is approximately 3.0 times higher than that of pristine BiVO<sub>4</sub>. The nanoporous CQDs-BiVO<sub>4</sub> also achieves an enhanced surface charge transfer efficiency of 45.8% and a shorter electron transport time of 0.23 ms at a flow rate of 300 W m<sup>–2</sup>. Time-resolved photoluminescence analysis reveals that a longer lifetime is achieved (τ<sub>1</sub> = 3.7 ns and τ<sub>2</sub> = 49.0 ns) for CQDs-BiVO<sub>4</sub>, confirming that the reduced electron–hole recombination is beneficial for bulk charge transfer.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 37\",\"pages\":\"18174–18182\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03481\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03481","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缓慢的析氧动力学被广泛认为是开发bivo4基光阳极的主要挑战之一。为了解决这一固有的限制,我们提出了一种由5纳米碳量子点(CQDs)装饰的纳米多孔BiVO4组成的集成光阳极。由于cqd具有较低的表面电位,因此可以作为有效的空穴传递层,从而产生具有大块BiVO4较高表面电位的向外界面内置电场。该电场能够驱动光产生的空穴到CQDs表面进行有效的水氧化。在模拟阳光下,CQDs-BiVO4在1.23 V vs RHE下的光电流为2.7 mA cm-2,比原始BiVO4高出约3.0倍。纳米多孔CQDs-BiVO4在300 W m-2的流速下,表面电荷转移效率提高了45.8%,电子传递时间缩短了0.23 ms。时间分辨光致发光分析表明,CQDs-BiVO4获得了更长的寿命(τ1 = 3.7 ns和τ2 = 49.0 ns),证实了减少的电子-空穴复合有利于体电荷转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoporous BiVO4 Decorated with Carbon Quantum Dots for Efficient Photoelectrochemical Water Splitting

Nanoporous BiVO4 Decorated with Carbon Quantum Dots for Efficient Photoelectrochemical Water Splitting

The sluggish kinetics of oxygen evolution is widely recognized as one of the major challenges in developing a BiVO4-based photoanode. To address this intrinsic limitation, we present an integrated photoanode composed of nanoporous BiVO4 decorated with 5 nm carbon quantum dots (CQDs). The CQDs function as an efficient hole transfer layer due to their lower surface potential, creating an outward interfacial built-in electric field with the higher surface potential of bulk BiVO4. This electric field is capable of driving photogenerated holes to the CQDs’ surface for efficient water oxidation. The CQDs-BiVO4 demonstrates an improved photocurrent of 2.7 mA cm–2 at 1.23 V vs RHE under simulated sunlight, which is approximately 3.0 times higher than that of pristine BiVO4. The nanoporous CQDs-BiVO4 also achieves an enhanced surface charge transfer efficiency of 45.8% and a shorter electron transport time of 0.23 ms at a flow rate of 300 W m–2. Time-resolved photoluminescence analysis reveals that a longer lifetime is achieved (τ1 = 3.7 ns and τ2 = 49.0 ns) for CQDs-BiVO4, confirming that the reduced electron–hole recombination is beneficial for bulk charge transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信