基于图神经网络的盾构隧道接触损失震害预测框架

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xianlong Wu , Xiaohua Bao , Jun Shen , Xiangsheng Chen
{"title":"基于图神经网络的盾构隧道接触损失震害预测框架","authors":"Xianlong Wu ,&nbsp;Xiaohua Bao ,&nbsp;Jun Shen ,&nbsp;Xiangsheng Chen","doi":"10.1016/j.autcon.2025.106535","DOIUrl":null,"url":null,"abstract":"<div><div>Contact loss defects (CLDs) at the tunnel–soil interface can significantly affect the seismic response of shield tunnels, while conventional finite element methods (FEM) are too time-consuming for rapid decision-making. This paper proposes a framework for seismic damage prediction of shield tunnels with CLD that directly maps field-detected CLD and stratum parameters to tunnel damage distributions. The framework integrates a multilayer perceptron (MLP) and a graph neural network (GNN) to encode finite element results into graph data and learn spatial damage patterns. It is trained and validated on a large dataset of simulated seismic responses covering diverse CLD scenarios and stratum conditions, and tested on real detection cases. The model achieves an R<sup>2</sup> of 0.98, RMSE of 4.2, and MAPE of 0.08, while reducing computation time by 90-fold compared with FEM. These results demonstrate the framework's effectiveness, efficiency, and scalability for rapid post-earthquake assessment of shield tunnels.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"180 ","pages":"Article 106535"},"PeriodicalIF":11.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural network–based framework for predicting seismic damage in shield tunnels with contact loss defects\",\"authors\":\"Xianlong Wu ,&nbsp;Xiaohua Bao ,&nbsp;Jun Shen ,&nbsp;Xiangsheng Chen\",\"doi\":\"10.1016/j.autcon.2025.106535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Contact loss defects (CLDs) at the tunnel–soil interface can significantly affect the seismic response of shield tunnels, while conventional finite element methods (FEM) are too time-consuming for rapid decision-making. This paper proposes a framework for seismic damage prediction of shield tunnels with CLD that directly maps field-detected CLD and stratum parameters to tunnel damage distributions. The framework integrates a multilayer perceptron (MLP) and a graph neural network (GNN) to encode finite element results into graph data and learn spatial damage patterns. It is trained and validated on a large dataset of simulated seismic responses covering diverse CLD scenarios and stratum conditions, and tested on real detection cases. The model achieves an R<sup>2</sup> of 0.98, RMSE of 4.2, and MAPE of 0.08, while reducing computation time by 90-fold compared with FEM. These results demonstrate the framework's effectiveness, efficiency, and scalability for rapid post-earthquake assessment of shield tunnels.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"180 \",\"pages\":\"Article 106535\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525005758\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525005758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

隧道-土界面处的接触损耗缺陷(CLDs)对盾构隧道的地震响应有显著影响,而传统的有限元方法(FEM)过于耗时,无法快速决策。本文提出了一种基于CLD的盾构隧道震害预测框架,该框架将现场探测到的CLD和地层参数直接映射到隧道震害分布中。该框架集成了多层感知器(MLP)和图神经网络(GNN),将有限元结果编码为图数据并学习空间损伤模式。该方法在模拟地震反应的大型数据集上进行了训练和验证,这些数据集涵盖了不同的CLD场景和地层条件,并在实际探测案例中进行了测试。该模型的R2为0.98,RMSE为4.2,MAPE为0.08,计算时间比FEM减少了90倍。这些结果证明了该框架在盾构隧道地震后快速评估中的有效性、高效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph neural network–based framework for predicting seismic damage in shield tunnels with contact loss defects
Contact loss defects (CLDs) at the tunnel–soil interface can significantly affect the seismic response of shield tunnels, while conventional finite element methods (FEM) are too time-consuming for rapid decision-making. This paper proposes a framework for seismic damage prediction of shield tunnels with CLD that directly maps field-detected CLD and stratum parameters to tunnel damage distributions. The framework integrates a multilayer perceptron (MLP) and a graph neural network (GNN) to encode finite element results into graph data and learn spatial damage patterns. It is trained and validated on a large dataset of simulated seismic responses covering diverse CLD scenarios and stratum conditions, and tested on real detection cases. The model achieves an R2 of 0.98, RMSE of 4.2, and MAPE of 0.08, while reducing computation time by 90-fold compared with FEM. These results demonstrate the framework's effectiveness, efficiency, and scalability for rapid post-earthquake assessment of shield tunnels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信