基于多区域微波辐射计网络的被动大气风廓线反演

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Shuailong Jiang , Yingying Ma , Chengwei Li , Lianfa Lei , Boming Liu , Shikuan Jin , Hui Li , Weiyan Wang , Ruonan Fan , Yujie Wang , Ao Miao , Wei Gong
{"title":"基于多区域微波辐射计网络的被动大气风廓线反演","authors":"Shuailong Jiang ,&nbsp;Yingying Ma ,&nbsp;Chengwei Li ,&nbsp;Lianfa Lei ,&nbsp;Boming Liu ,&nbsp;Shikuan Jin ,&nbsp;Hui Li ,&nbsp;Weiyan Wang ,&nbsp;Ruonan Fan ,&nbsp;Yujie Wang ,&nbsp;Ao Miao ,&nbsp;Wei Gong","doi":"10.1016/j.atmosres.2025.108474","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric Wind Profile (AWP) retrieval is essential for applications in meteorology, aerospace, and renewable energy. This study introduces MWR-WINet, a novel framework for passive AWP retrieval using ground-based Microwave Radiometer (MWR) data. To the best of our knowledge, this is the first study to apply passive MWR observations for wind profile estimation. The proposed approach incorporates a multi-district observation network to enhance spatial representation and introduces a composite loss function that combines Mean Squared Error (MSE) with Kullback–Leibler divergence (KL) to improve model performance. Applied to three districts in Xi'an—Weiyang, Chang'an, and Lintong—the model achieves retrieval errors of 1.63, 1.70, and 1.87 m/s, respectively. A joint three-district model further reduces the error to 1.27 m/s and enhances wind direction accuracy by 19.56 %, with a correlation gain of 0.08. These results demonstrate that a networked observational strategy significantly improves retrieval accuracy. This work overcomes the limitations of traditional observation methods and supports the broader application of MWR-based atmospheric profiling.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"329 ","pages":"Article 108474"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive atmospheric wind profile retrieval via multi-region microwave radiometer network\",\"authors\":\"Shuailong Jiang ,&nbsp;Yingying Ma ,&nbsp;Chengwei Li ,&nbsp;Lianfa Lei ,&nbsp;Boming Liu ,&nbsp;Shikuan Jin ,&nbsp;Hui Li ,&nbsp;Weiyan Wang ,&nbsp;Ruonan Fan ,&nbsp;Yujie Wang ,&nbsp;Ao Miao ,&nbsp;Wei Gong\",\"doi\":\"10.1016/j.atmosres.2025.108474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atmospheric Wind Profile (AWP) retrieval is essential for applications in meteorology, aerospace, and renewable energy. This study introduces MWR-WINet, a novel framework for passive AWP retrieval using ground-based Microwave Radiometer (MWR) data. To the best of our knowledge, this is the first study to apply passive MWR observations for wind profile estimation. The proposed approach incorporates a multi-district observation network to enhance spatial representation and introduces a composite loss function that combines Mean Squared Error (MSE) with Kullback–Leibler divergence (KL) to improve model performance. Applied to three districts in Xi'an—Weiyang, Chang'an, and Lintong—the model achieves retrieval errors of 1.63, 1.70, and 1.87 m/s, respectively. A joint three-district model further reduces the error to 1.27 m/s and enhances wind direction accuracy by 19.56 %, with a correlation gain of 0.08. These results demonstrate that a networked observational strategy significantly improves retrieval accuracy. This work overcomes the limitations of traditional observation methods and supports the broader application of MWR-based atmospheric profiling.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"329 \",\"pages\":\"Article 108474\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809525005666\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525005666","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气风廓线(AWP)的检索在气象、航空航天和可再生能源领域的应用是必不可少的。本文介绍了一种基于地面微波辐射计(MWR)数据被动反演AWP的新框架MWR- winet。据我们所知,这是第一个将被动MWR观测应用于风廓线估计的研究。该方法采用多区域观测网络增强空间表征,引入均方误差(MSE)和Kullback-Leibler散度(KL)相结合的复合损失函数提高模型性能。应用于西安市未央、长安、临潼3个区,模型的反演误差分别为1.63、1.70、1.87 m/s。联合三区模型进一步将误差降低到1.27 m/s,将风向精度提高了19.56%,相关增益为0.08。这些结果表明,网络化的观测策略显著提高了检索精度。这项工作克服了传统观测方法的局限性,为基于mwr的大气剖面的更广泛应用提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive atmospheric wind profile retrieval via multi-region microwave radiometer network
Atmospheric Wind Profile (AWP) retrieval is essential for applications in meteorology, aerospace, and renewable energy. This study introduces MWR-WINet, a novel framework for passive AWP retrieval using ground-based Microwave Radiometer (MWR) data. To the best of our knowledge, this is the first study to apply passive MWR observations for wind profile estimation. The proposed approach incorporates a multi-district observation network to enhance spatial representation and introduces a composite loss function that combines Mean Squared Error (MSE) with Kullback–Leibler divergence (KL) to improve model performance. Applied to three districts in Xi'an—Weiyang, Chang'an, and Lintong—the model achieves retrieval errors of 1.63, 1.70, and 1.87 m/s, respectively. A joint three-district model further reduces the error to 1.27 m/s and enhances wind direction accuracy by 19.56 %, with a correlation gain of 0.08. These results demonstrate that a networked observational strategy significantly improves retrieval accuracy. This work overcomes the limitations of traditional observation methods and supports the broader application of MWR-based atmospheric profiling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信