椭圆型问题的带拉格朗日乘子的间断伽辽金方法的后验误差估计

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mi-Young Kim
{"title":"椭圆型问题的带拉格朗日乘子的间断伽辽金方法的后验误差估计","authors":"Mi-Young Kim","doi":"10.1016/j.camwa.2025.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to derive and analyze an a posteriori error estimator for the solution of the discontinuous Galerkin method with Lagrange multiplier (DGLM) for the elliptic problems with nonhomogeneous Dirichlet boundary condition <span><math><mi>u</mi><mo>=</mo><mi>g</mi></math></span> for <em>g</em> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>. A general version of the DGLM method is derived. Strong stability of the solution of the DGLM method is proved. Edgewise iterative scheme for the general DGLM method is described.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 38-48"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimate of the discontinuous Galerkin method with Lagrange multiplier for elliptic problems\",\"authors\":\"Mi-Young Kim\",\"doi\":\"10.1016/j.camwa.2025.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to derive and analyze an a posteriori error estimator for the solution of the discontinuous Galerkin method with Lagrange multiplier (DGLM) for the elliptic problems with nonhomogeneous Dirichlet boundary condition <span><math><mi>u</mi><mo>=</mo><mi>g</mi></math></span> for <em>g</em> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>. A general version of the DGLM method is derived. Strong stability of the solution of the DGLM method is proved. Edgewise iterative scheme for the general DGLM method is described.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"200 \",\"pages\":\"Pages 38-48\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003700\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003700","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对H1/2(∂Ω)中具有非齐次Dirichlet边界条件u=g的椭圆型问题,推导并分析了带拉格朗日乘子的不连续Galerkin方法(DGLM)解的后验误差估计。导出了DGLM方法的通用版本。证明了DGLM方法解具有较强的稳定性。介绍了一般DGLM方法的边缘迭代格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimate of the discontinuous Galerkin method with Lagrange multiplier for elliptic problems
This study aims to derive and analyze an a posteriori error estimator for the solution of the discontinuous Galerkin method with Lagrange multiplier (DGLM) for the elliptic problems with nonhomogeneous Dirichlet boundary condition u=g for g in H1/2(Ω). A general version of the DGLM method is derived. Strong stability of the solution of the DGLM method is proved. Edgewise iterative scheme for the general DGLM method is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信