Biot-Brinkman模型混合有限元近似的稳定性和收敛性分析

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Wenlong He , Jiwei Zhang
{"title":"Biot-Brinkman模型混合有限元近似的稳定性和收敛性分析","authors":"Wenlong He ,&nbsp;Jiwei Zhang","doi":"10.1016/j.camwa.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Many multiphysics processes of fluid-solid interaction within a porous medium can be described by the Biot-Brinkman model to account for the effects of viscosity in fluid flow. By introducing the auxiliary variables, we can transform the original problem into two generalized Stokes equations. The generalized Stokes equations incorporate a built-in mechanism to circumvent the Poisson locking for the continuous Galerkin method. Subsequently, we establish an energy law and provide a priori estimates for the reformulated problem. Well-posedness is demonstrated using the standard Galerkin method in conjunction with a compactness argument. After that, we develop stable mixed finite element algorithms for the reformulated problem. Influenced by Lamé constant <em>λ</em>, we design three finite element pairs for the proposed algorithms and present the corresponding error estimates. Numerical tests are conducted to validate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 22-37"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and convergence analysis of mixed finite element approximations for a Biot-Brinkman model\",\"authors\":\"Wenlong He ,&nbsp;Jiwei Zhang\",\"doi\":\"10.1016/j.camwa.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many multiphysics processes of fluid-solid interaction within a porous medium can be described by the Biot-Brinkman model to account for the effects of viscosity in fluid flow. By introducing the auxiliary variables, we can transform the original problem into two generalized Stokes equations. The generalized Stokes equations incorporate a built-in mechanism to circumvent the Poisson locking for the continuous Galerkin method. Subsequently, we establish an energy law and provide a priori estimates for the reformulated problem. Well-posedness is demonstrated using the standard Galerkin method in conjunction with a compactness argument. After that, we develop stable mixed finite element algorithms for the reformulated problem. Influenced by Lamé constant <em>λ</em>, we design three finite element pairs for the proposed algorithms and present the corresponding error estimates. Numerical tests are conducted to validate the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"200 \",\"pages\":\"Pages 22-37\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003712\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003712","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

多孔介质中流固相互作用的许多多物理场过程可以用Biot-Brinkman模型来描述,以解释流体流动中粘度的影响。通过引入辅助变量,可以将原问题转化为两个广义Stokes方程。广义Stokes方程包含了一个内置机制来规避连续伽辽金方法的泊松锁定。随后,我们建立了能量定律,并为重新表述的问题提供了先验估计。利用标准伽辽金方法结合紧性论证论证了适位性。在此基础上,我们开发了稳定的混合有限元算法。受lam常数λ的影响,我们设计了三个有限元对,并给出了相应的误差估计。通过数值试验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and convergence analysis of mixed finite element approximations for a Biot-Brinkman model
Many multiphysics processes of fluid-solid interaction within a porous medium can be described by the Biot-Brinkman model to account for the effects of viscosity in fluid flow. By introducing the auxiliary variables, we can transform the original problem into two generalized Stokes equations. The generalized Stokes equations incorporate a built-in mechanism to circumvent the Poisson locking for the continuous Galerkin method. Subsequently, we establish an energy law and provide a priori estimates for the reformulated problem. Well-posedness is demonstrated using the standard Galerkin method in conjunction with a compactness argument. After that, we develop stable mixed finite element algorithms for the reformulated problem. Influenced by Lamé constant λ, we design three finite element pairs for the proposed algorithms and present the corresponding error estimates. Numerical tests are conducted to validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信