使用正电子发射断层扫描在体内检测多巴胺释放的广义框架。

IF 4.5
Jordan U Hanania, Connor Wj Bevington, Ju-Chieh Kevin Cheng, Dongning Su, Alexandra Pavel, A Jon Stoessl, Vesna Sossi
{"title":"使用正电子发射断层扫描在体内检测多巴胺释放的广义框架。","authors":"Jordan U Hanania, Connor Wj Bevington, Ju-Chieh Kevin Cheng, Dongning Su, Alexandra Pavel, A Jon Stoessl, Vesna Sossi","doi":"10.1177/0271678X251362958","DOIUrl":null,"url":null,"abstract":"<p><p>Voxel-level detection of task-induced striatal dopamine (DA) release in humans is achievable with dynamic PET imaging, enabling complex studies of motor, cognitive, and reward tasks. We previously introduced a data-driven methodology termed Residual Space Detection (RSD), which improved detection of low-amplitude DA release, however its applicability was limited to detection of low-amplitude and/or localized effects. Here, we generalize RSD to broader DA release scenarios by introducing a novel model-based baseline time-activity curve prediction method in combination with non-local-means clustering (RSD-Hybrid-IMRTM). In simulations, RSD-Hybrid-IMRTM outperforms our previous methodology for detecting global striatal DA release, improving absolute detection sensitivity by 18% at 5% false positive rate, while also demonstrating the ability to track the magnitude of task-induced changes in synaptic DA concentrations in a noise-robust manner. As a proof of principle, we apply RSD-Hybrid-IMRTM to healthy controls and Parkinson's disease subjects undergoing finger and foot tapping tasks. Results reveal expected group differences in parametric maps, parameter magnitudes, and functional segregation, demonstrating RSD-Hybrid-IMRTM's utility for investigating neurotransmission in human cohorts.</p>","PeriodicalId":520660,"journal":{"name":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251362958"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449306/pdf/","citationCount":"0","resultStr":"{\"title\":\"A generalized framework for <i>in vivo</i> detection of dopamine release using positron emission tomography.\",\"authors\":\"Jordan U Hanania, Connor Wj Bevington, Ju-Chieh Kevin Cheng, Dongning Su, Alexandra Pavel, A Jon Stoessl, Vesna Sossi\",\"doi\":\"10.1177/0271678X251362958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voxel-level detection of task-induced striatal dopamine (DA) release in humans is achievable with dynamic PET imaging, enabling complex studies of motor, cognitive, and reward tasks. We previously introduced a data-driven methodology termed Residual Space Detection (RSD), which improved detection of low-amplitude DA release, however its applicability was limited to detection of low-amplitude and/or localized effects. Here, we generalize RSD to broader DA release scenarios by introducing a novel model-based baseline time-activity curve prediction method in combination with non-local-means clustering (RSD-Hybrid-IMRTM). In simulations, RSD-Hybrid-IMRTM outperforms our previous methodology for detecting global striatal DA release, improving absolute detection sensitivity by 18% at 5% false positive rate, while also demonstrating the ability to track the magnitude of task-induced changes in synaptic DA concentrations in a noise-robust manner. As a proof of principle, we apply RSD-Hybrid-IMRTM to healthy controls and Parkinson's disease subjects undergoing finger and foot tapping tasks. Results reveal expected group differences in parametric maps, parameter magnitudes, and functional segregation, demonstrating RSD-Hybrid-IMRTM's utility for investigating neurotransmission in human cohorts.</p>\",\"PeriodicalId\":520660,\"journal\":{\"name\":\"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X251362958\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X251362958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X251362958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态PET成像可以实现人体任务诱导纹状体多巴胺(DA)释放的体素水平检测,从而实现对运动、认知和奖励任务的复杂研究。我们之前介绍了一种数据驱动的方法,称为残余空间检测(RSD),它改进了低幅度DA释放的检测,但其适用性仅限于检测低幅度和/或局部效应。在这里,我们通过引入一种新的基于模型的基线时间-活动曲线预测方法,结合非局部均值聚类(RSD- hybrid - imrtm),将RSD推广到更广泛的数据释放场景。在模拟中,RSD-Hybrid-IMRTM在检测纹状体整体DA释放方面优于我们之前的方法,在5%的假阳性率下将绝对检测灵敏度提高了18%,同时也证明了以噪声鲁棒性方式跟踪任务诱导的突触DA浓度变化幅度的能力。作为原理证明,我们将RSD-Hybrid-IMRTM应用于健康对照者和帕金森病患者进行手指和脚敲击任务。结果揭示了参数图、参数大小和功能分离的预期组差异,证明了RSD-Hybrid-IMRTM在研究人类队列中的神经传递方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized framework for in vivo detection of dopamine release using positron emission tomography.

Voxel-level detection of task-induced striatal dopamine (DA) release in humans is achievable with dynamic PET imaging, enabling complex studies of motor, cognitive, and reward tasks. We previously introduced a data-driven methodology termed Residual Space Detection (RSD), which improved detection of low-amplitude DA release, however its applicability was limited to detection of low-amplitude and/or localized effects. Here, we generalize RSD to broader DA release scenarios by introducing a novel model-based baseline time-activity curve prediction method in combination with non-local-means clustering (RSD-Hybrid-IMRTM). In simulations, RSD-Hybrid-IMRTM outperforms our previous methodology for detecting global striatal DA release, improving absolute detection sensitivity by 18% at 5% false positive rate, while also demonstrating the ability to track the magnitude of task-induced changes in synaptic DA concentrations in a noise-robust manner. As a proof of principle, we apply RSD-Hybrid-IMRTM to healthy controls and Parkinson's disease subjects undergoing finger and foot tapping tasks. Results reveal expected group differences in parametric maps, parameter magnitudes, and functional segregation, demonstrating RSD-Hybrid-IMRTM's utility for investigating neurotransmission in human cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信