生物和微生物控制臭椿根际来源的微生物组驱动细尾石蒜(半翅目:狐尾科)肠道微生物组组成。

Xiaoxiao Guo, Aiping Liang
{"title":"生物和微生物控制臭椿根际来源的微生物组驱动细尾石蒜(半翅目:狐尾科)肠道微生物组组成。","authors":"Xiaoxiao Guo, Aiping Liang","doi":"10.1093/jee/toaf217","DOIUrl":null,"url":null,"abstract":"<p><p>The spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), a highly polyphagous invasive pest, preferentially feeds on tree-of-heaven (TOH), Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae). However, the bacterial interactions between this pest and its host plant remain poorly understood. In this study, we investigated the bacterial community composition and functional profiles in the SLF gut, TOH leaves, and TOH rhizosphere soil using amplicon and metagenomic sequencing. This study showed that the bacterial alpha-diversity differed significantly among the 3 sample types (P < 0.05). Venn analysis identified 4 shared amplicon sequence variants (ASVs) between the TOH rhizosphere soil and SLF gut, suggesting potential bacterial interactions or transfer. Further source-tracking analysis indicated that most gut bacteria originated from the rhizosphere soil. However, the dominant taxa varied across compartments: Proteobacteria dominated both the SLF gut and TOH leaves, while Acidobacteria predominated in the TOH rhizosphere soil. Network analysis revealed significant correlations between gut and rhizosphere microbes, notably Candidatus Vidania and Fastidiosipila (P < 0.05, r = 1). Functional profiling showed that the rhizosphere microbiome was enriched in nitrogen cycling and carbon fixation pathways, whereas the gut microbiome was associated with carbohydrate metabolism and nutrient assimilation. These results provide new insights into the potential roles of microbiomes in mediating plant-insect interactions and underscore the rhizosphere as a critical microbial source for SLF. Understanding these microbial connections may support the development of innovative and sustainable pest management strategies.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological and Microbial ControlRhizosphere-derived microbiome of Ailanthus altissima drives gut microbiome composition in Lycorma delicatula (Hemiptera: Fulgoridae).\",\"authors\":\"Xiaoxiao Guo, Aiping Liang\",\"doi\":\"10.1093/jee/toaf217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), a highly polyphagous invasive pest, preferentially feeds on tree-of-heaven (TOH), Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae). However, the bacterial interactions between this pest and its host plant remain poorly understood. In this study, we investigated the bacterial community composition and functional profiles in the SLF gut, TOH leaves, and TOH rhizosphere soil using amplicon and metagenomic sequencing. This study showed that the bacterial alpha-diversity differed significantly among the 3 sample types (P < 0.05). Venn analysis identified 4 shared amplicon sequence variants (ASVs) between the TOH rhizosphere soil and SLF gut, suggesting potential bacterial interactions or transfer. Further source-tracking analysis indicated that most gut bacteria originated from the rhizosphere soil. However, the dominant taxa varied across compartments: Proteobacteria dominated both the SLF gut and TOH leaves, while Acidobacteria predominated in the TOH rhizosphere soil. Network analysis revealed significant correlations between gut and rhizosphere microbes, notably Candidatus Vidania and Fastidiosipila (P < 0.05, r = 1). Functional profiling showed that the rhizosphere microbiome was enriched in nitrogen cycling and carbon fixation pathways, whereas the gut microbiome was associated with carbohydrate metabolism and nutrient assimilation. These results provide new insights into the potential roles of microbiomes in mediating plant-insect interactions and underscore the rhizosphere as a critical microbial source for SLF. Understanding these microbial connections may support the development of innovative and sustainable pest management strategies.</p>\",\"PeriodicalId\":94077,\"journal\":{\"name\":\"Journal of economic entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of economic entomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jee/toaf217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

斑点灯笼蝇(SLF), Lycorma delicatula (White)(半翅目:斑点灯笼蝇科)是一种高度多食性的入侵害虫,优先以天树(TOH), Ailanthus altissima (Mill.)为食。单株的(蓼科:刺花科)。然而,这种害虫与寄主植物之间的细菌相互作用仍然知之甚少。在这项研究中,我们利用扩增子和宏基因组测序研究了SLF肠道、TOH叶片和TOH根际土壤中的细菌群落组成和功能特征。本研究表明,3种样品类型的细菌α -多样性差异显著(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological and Microbial ControlRhizosphere-derived microbiome of Ailanthus altissima drives gut microbiome composition in Lycorma delicatula (Hemiptera: Fulgoridae).

The spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), a highly polyphagous invasive pest, preferentially feeds on tree-of-heaven (TOH), Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae). However, the bacterial interactions between this pest and its host plant remain poorly understood. In this study, we investigated the bacterial community composition and functional profiles in the SLF gut, TOH leaves, and TOH rhizosphere soil using amplicon and metagenomic sequencing. This study showed that the bacterial alpha-diversity differed significantly among the 3 sample types (P < 0.05). Venn analysis identified 4 shared amplicon sequence variants (ASVs) between the TOH rhizosphere soil and SLF gut, suggesting potential bacterial interactions or transfer. Further source-tracking analysis indicated that most gut bacteria originated from the rhizosphere soil. However, the dominant taxa varied across compartments: Proteobacteria dominated both the SLF gut and TOH leaves, while Acidobacteria predominated in the TOH rhizosphere soil. Network analysis revealed significant correlations between gut and rhizosphere microbes, notably Candidatus Vidania and Fastidiosipila (P < 0.05, r = 1). Functional profiling showed that the rhizosphere microbiome was enriched in nitrogen cycling and carbon fixation pathways, whereas the gut microbiome was associated with carbohydrate metabolism and nutrient assimilation. These results provide new insights into the potential roles of microbiomes in mediating plant-insect interactions and underscore the rhizosphere as a critical microbial source for SLF. Understanding these microbial connections may support the development of innovative and sustainable pest management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信