在没有和存在急性肺损伤的情况下,Alx/Fpr2基因缺失对肺部炎症的调节存在差异。

Q3 Medicine
Rafia Virk, Madeline Behee, Abrar Al-Shaer, Megan Wagner, Michael Armstrong, Nichole Reisdorph, Brooke Bathon, Nari Beatty, Traci Davis, Michael J Yaeger, Rosemary S Gray, Meagan D Bridges, Kymberly M Gowdy, Saame Raza Shaikh
{"title":"在没有和存在急性肺损伤的情况下,Alx/Fpr2基因缺失对肺部炎症的调节存在差异。","authors":"Rafia Virk, Madeline Behee, Abrar Al-Shaer, Megan Wagner, Michael Armstrong, Nichole Reisdorph, Brooke Bathon, Nari Beatty, Traci Davis, Michael J Yaeger, Rosemary S Gray, Meagan D Bridges, Kymberly M Gowdy, Saame Raza Shaikh","doi":"10.1093/immhor/vlaf043","DOIUrl":null,"url":null,"abstract":"<p><p>The inflammation resolution receptor lipoxin A4/formyl peptide receptor 2 (ALX/FPR2) plays a critical role in immune regulation by binding select oxylipins derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs). While ALX/FPR2 is implicated in controlling inflammation initiation and resolution, its specific role in pulmonary inflammatory responses remains unclear. In this study, we investigated how genetic deletion of Alx/Fpr2 controls oxylipin levels, immune cell populations, and inflammatory cytokines under conditions of homeostasis and injury. Alx/Fpr2 knockout (KO) mice exhibited normal food intake and weight gain but showed impaired glucose and lipid metabolism. Targeted lipidomic analyses by liquid chromatography-tandem mass spectrometry revealed elevated pulmonary concentrations of n-6 and n-3 PUFA-derived oxylipins in KO mice compared to controls. Flow cytometry further demonstrated increased lung infiltration of NK cells, monocytes, and lymphoid cells, indicating a proinflammatory state in the absence of injury. Following 24 h of LPS-induced acute lung injury, IL-1β levels were elevated in KO mice, but pulmonary histopathology, immune cell numbers, and oxylipin levels were comparable to those of controls. These results suggested a protective role of ALX/FPR2 upon acute lung injury, which led us to further investigate the role of ALX/FPR2 upon 72 h of lung injury. Indeed, Alx/Fpr2 KO mice showed reduced bronchoalveolar lavage protein concentration and lower levels of IL-6 and TNF-α. Collectively, these findings demonstrate that ALX/FPR2 deficiency promotes basal pulmonary inflammation but protects against prolonged injury-induced inflammation, highlighting the context-dependent role of this receptor in pulmonary inflammation.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic deletion of Alx/Fpr2 differentially regulates pulmonary inflammation in the absence and presence of acute lung injury.\",\"authors\":\"Rafia Virk, Madeline Behee, Abrar Al-Shaer, Megan Wagner, Michael Armstrong, Nichole Reisdorph, Brooke Bathon, Nari Beatty, Traci Davis, Michael J Yaeger, Rosemary S Gray, Meagan D Bridges, Kymberly M Gowdy, Saame Raza Shaikh\",\"doi\":\"10.1093/immhor/vlaf043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inflammation resolution receptor lipoxin A4/formyl peptide receptor 2 (ALX/FPR2) plays a critical role in immune regulation by binding select oxylipins derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs). While ALX/FPR2 is implicated in controlling inflammation initiation and resolution, its specific role in pulmonary inflammatory responses remains unclear. In this study, we investigated how genetic deletion of Alx/Fpr2 controls oxylipin levels, immune cell populations, and inflammatory cytokines under conditions of homeostasis and injury. Alx/Fpr2 knockout (KO) mice exhibited normal food intake and weight gain but showed impaired glucose and lipid metabolism. Targeted lipidomic analyses by liquid chromatography-tandem mass spectrometry revealed elevated pulmonary concentrations of n-6 and n-3 PUFA-derived oxylipins in KO mice compared to controls. Flow cytometry further demonstrated increased lung infiltration of NK cells, monocytes, and lymphoid cells, indicating a proinflammatory state in the absence of injury. Following 24 h of LPS-induced acute lung injury, IL-1β levels were elevated in KO mice, but pulmonary histopathology, immune cell numbers, and oxylipin levels were comparable to those of controls. These results suggested a protective role of ALX/FPR2 upon acute lung injury, which led us to further investigate the role of ALX/FPR2 upon 72 h of lung injury. Indeed, Alx/Fpr2 KO mice showed reduced bronchoalveolar lavage protein concentration and lower levels of IL-6 and TNF-α. Collectively, these findings demonstrate that ALX/FPR2 deficiency promotes basal pulmonary inflammation but protects against prolonged injury-induced inflammation, highlighting the context-dependent role of this receptor in pulmonary inflammation.</p>\",\"PeriodicalId\":94037,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immhor/vlaf043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlaf043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

炎症解决受体脂素A4/甲酰基肽受体2 (ALX/FPR2)通过结合n-6和n-3多不饱和脂肪酸(PUFAs)衍生的氧化脂素,在免疫调节中发挥关键作用。虽然ALX/FPR2参与控制炎症的发生和消退,但其在肺部炎症反应中的具体作用尚不清楚。在这项研究中,我们研究了Alx/Fpr2基因缺失如何在稳态和损伤条件下控制氧化脂素水平、免疫细胞群和炎症细胞因子。Alx/Fpr2敲除(KO)小鼠表现出正常的食物摄入和体重增加,但糖和脂代谢受损。液相色谱-串联质谱法的靶向脂质组学分析显示,与对照组相比,KO小鼠肺中n-6和n-3 pufa衍生的氧脂素浓度升高。流式细胞术进一步显示NK细胞、单核细胞和淋巴样细胞的浸润增加,表明在没有损伤的情况下处于促炎状态。lps诱导的急性肺损伤24小时后,KO小鼠的IL-1β水平升高,但肺组织病理学、免疫细胞数量和氧脂素水平与对照组相当。这些结果提示ALX/FPR2对急性肺损伤具有保护作用,因此我们将进一步研究ALX/FPR2对肺损伤72 h的作用。事实上,Alx/Fpr2 KO小鼠显示支气管肺泡灌洗液蛋白浓度降低,IL-6和TNF-α水平降低。总的来说,这些发现表明ALX/FPR2缺乏促进了基础肺部炎症,但保护了长期损伤性炎症,突出了该受体在肺部炎症中的环境依赖性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic deletion of Alx/Fpr2 differentially regulates pulmonary inflammation in the absence and presence of acute lung injury.

Genetic deletion of Alx/Fpr2 differentially regulates pulmonary inflammation in the absence and presence of acute lung injury.

Genetic deletion of Alx/Fpr2 differentially regulates pulmonary inflammation in the absence and presence of acute lung injury.

Genetic deletion of Alx/Fpr2 differentially regulates pulmonary inflammation in the absence and presence of acute lung injury.

The inflammation resolution receptor lipoxin A4/formyl peptide receptor 2 (ALX/FPR2) plays a critical role in immune regulation by binding select oxylipins derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs). While ALX/FPR2 is implicated in controlling inflammation initiation and resolution, its specific role in pulmonary inflammatory responses remains unclear. In this study, we investigated how genetic deletion of Alx/Fpr2 controls oxylipin levels, immune cell populations, and inflammatory cytokines under conditions of homeostasis and injury. Alx/Fpr2 knockout (KO) mice exhibited normal food intake and weight gain but showed impaired glucose and lipid metabolism. Targeted lipidomic analyses by liquid chromatography-tandem mass spectrometry revealed elevated pulmonary concentrations of n-6 and n-3 PUFA-derived oxylipins in KO mice compared to controls. Flow cytometry further demonstrated increased lung infiltration of NK cells, monocytes, and lymphoid cells, indicating a proinflammatory state in the absence of injury. Following 24 h of LPS-induced acute lung injury, IL-1β levels were elevated in KO mice, but pulmonary histopathology, immune cell numbers, and oxylipin levels were comparable to those of controls. These results suggested a protective role of ALX/FPR2 upon acute lung injury, which led us to further investigate the role of ALX/FPR2 upon 72 h of lung injury. Indeed, Alx/Fpr2 KO mice showed reduced bronchoalveolar lavage protein concentration and lower levels of IL-6 and TNF-α. Collectively, these findings demonstrate that ALX/FPR2 deficiency promotes basal pulmonary inflammation but protects against prolonged injury-induced inflammation, highlighting the context-dependent role of this receptor in pulmonary inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信