一种抑制高分辨率同核化学位移相关核磁共振谱对角峰的简单算法。

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Shengyu Zhang , Jhinuk Saha , Yuchen Li , Xinhua Peng , Ryan P. McGlinchey , Ayyalusamy Ramamoorthy , Riqiang Fu
{"title":"一种抑制高分辨率同核化学位移相关核磁共振谱对角峰的简单算法。","authors":"Shengyu Zhang ,&nbsp;Jhinuk Saha ,&nbsp;Yuchen Li ,&nbsp;Xinhua Peng ,&nbsp;Ryan P. McGlinchey ,&nbsp;Ayyalusamy Ramamoorthy ,&nbsp;Riqiang Fu","doi":"10.1016/j.jmr.2025.107967","DOIUrl":null,"url":null,"abstract":"<div><div>Previous experimental strategies aimed at completely suppressing diagonal peaks in NMR homonuclear correlation spectra often resulted in reduced sensitivity for cross peaks. In this work, we report a spectral shearing approach that transforms diagonal peaks along the diagonal axis of a homonuclear correlation spectrum into a zero-frequency line in the indirect dimension. This allows for effective extraction and substantial suppression of diagonal peaks using a recently proposed data processing algorithm based on quadrature-detected spin-echo diagonal peak suppression. Since the shearing process only rearranges the positions of cross peaks without affecting their intensities, the sensitivity of cross peaks is fully preserved while diagonal peaks are significantly reduced. The effectiveness of this method is demonstrated using uniformly <sup>13</sup>C,<sup>15</sup>N labeled α-synuclein amyloid fibrils and aquaporin Z membrane protein samples.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"381 ","pages":"Article 107967"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple algorithm to suppress diagonal peaks in high-resolution homonuclear chemical shift correlation NMR spectra\",\"authors\":\"Shengyu Zhang ,&nbsp;Jhinuk Saha ,&nbsp;Yuchen Li ,&nbsp;Xinhua Peng ,&nbsp;Ryan P. McGlinchey ,&nbsp;Ayyalusamy Ramamoorthy ,&nbsp;Riqiang Fu\",\"doi\":\"10.1016/j.jmr.2025.107967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous experimental strategies aimed at completely suppressing diagonal peaks in NMR homonuclear correlation spectra often resulted in reduced sensitivity for cross peaks. In this work, we report a spectral shearing approach that transforms diagonal peaks along the diagonal axis of a homonuclear correlation spectrum into a zero-frequency line in the indirect dimension. This allows for effective extraction and substantial suppression of diagonal peaks using a recently proposed data processing algorithm based on quadrature-detected spin-echo diagonal peak suppression. Since the shearing process only rearranges the positions of cross peaks without affecting their intensities, the sensitivity of cross peaks is fully preserved while diagonal peaks are significantly reduced. The effectiveness of this method is demonstrated using uniformly <sup>13</sup>C,<sup>15</sup>N labeled α-synuclein amyloid fibrils and aquaporin Z membrane protein samples.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"381 \",\"pages\":\"Article 107967\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725001399\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725001399","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

以往旨在完全抑制核磁共振同核相关谱对角峰的实验策略往往导致交叉峰灵敏度降低。在这项工作中,我们报告了一种光谱剪切方法,该方法将沿同核相关谱对角线轴的对角峰转换为间接维的零频率线。使用最近提出的基于正交检测自旋回波对角峰抑制的数据处理算法,这允许有效地提取和大量抑制对角峰。由于剪切过程只是重新排列了交叉峰的位置,而不影响其强度,因此交叉峰的灵敏度得到了充分的保留,而对角峰的灵敏度明显降低。用13C、15N标记的α-突触核蛋白淀粉样原纤维和水通道蛋白Z膜蛋白样品证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A simple algorithm to suppress diagonal peaks in high-resolution homonuclear chemical shift correlation NMR spectra

A simple algorithm to suppress diagonal peaks in high-resolution homonuclear chemical shift correlation NMR spectra
Previous experimental strategies aimed at completely suppressing diagonal peaks in NMR homonuclear correlation spectra often resulted in reduced sensitivity for cross peaks. In this work, we report a spectral shearing approach that transforms diagonal peaks along the diagonal axis of a homonuclear correlation spectrum into a zero-frequency line in the indirect dimension. This allows for effective extraction and substantial suppression of diagonal peaks using a recently proposed data processing algorithm based on quadrature-detected spin-echo diagonal peak suppression. Since the shearing process only rearranges the positions of cross peaks without affecting their intensities, the sensitivity of cross peaks is fully preserved while diagonal peaks are significantly reduced. The effectiveness of this method is demonstrated using uniformly 13C,15N labeled α-synuclein amyloid fibrils and aquaporin Z membrane protein samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信