Shimaa Hathan , Dayane Oliveira , Karina G. Amorim , Panagiotis Zoidis , Alex J. Delgado , Jason A. Griggs , Patricia Pereira , Mateus G. Rocha
{"title":"评估3d研磨和3d打印修复牙科材料的生物力学性能。","authors":"Shimaa Hathan , Dayane Oliveira , Karina G. Amorim , Panagiotis Zoidis , Alex J. Delgado , Jason A. Griggs , Patricia Pereira , Mateus G. Rocha","doi":"10.1016/j.jmbbm.2025.107202","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The aim of this study was to evaluate the biaxial flexural strength (BFS) and modulus (BFM) of 3D-milled and 3D-printed restorative materials and assess their biomechanical behavior when bonded to dentin analog.</div></div><div><h3>Materials and methods</h3><div>Five dental material classes were tested: lithium disilicate glass-ceramic (Emax CAD), leucite-reinforced glass-ceramic (Empress CAD), polymer-infiltrated ceramic (Vita Enamic), 3D-milled resin-based composite (Lava Ultimate), and 3D-printed resin-based composite (Crown X). Disk-shaped specimens (n = 20, d = 12 mm, t = 1 mm) were fabricated. BFS and BFM were measured using biaxial flexural testing. Additional specimens were bonded to dentin analog (NEMA G10) and tested for BFS. Finite element analysis (FEA) evaluated stress distribution. Fractographic analysis used digital optical and scanning electron microscopy. Data was analyzed using one-way ANOVA and Weibull distribution (α = 0.05).</div></div><div><h3>Results</h3><div>Emax CAD exhibited highest mean BFS (312.71 ± 51.89 MPa) and BFM (41.30 ± 0.76 GPa), significantly superior to other materials (P < 0.05). Crown X demonstrated second-highest BFS (156.55 ± 30.88 MPa) but lowest BFM (10.77 ± 0.40 GPa). When bonded to dentin analog, BFS ranking changed: Emax CAD > Empress CAD > Enamic > Lava Ultimate > Crown X. FEA revealed materials with higher moduli retained stress within restoration, while lower modulus materials transferred stress to dentin analog. Weibull analysis showed Vita Enamic had highest Weibull modulus when bonded, indicating lowest variability, while Emax CAD showed lowest despite superior strength.</div></div><div><h3>Conclusions</h3><div>3D-milled lithium disilicate (Emax CAD) demonstrated superior mechanical properties and stress distribution. While 3D-printed composite (Crown X) showed promising strength when tested alone, performance significantly decreased when bonded to dentin analog.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"173 ","pages":"Article 107202"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the biomechanical properties of 3D-milled and 3D-printed restorative dental materials\",\"authors\":\"Shimaa Hathan , Dayane Oliveira , Karina G. Amorim , Panagiotis Zoidis , Alex J. Delgado , Jason A. Griggs , Patricia Pereira , Mateus G. Rocha\",\"doi\":\"10.1016/j.jmbbm.2025.107202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>The aim of this study was to evaluate the biaxial flexural strength (BFS) and modulus (BFM) of 3D-milled and 3D-printed restorative materials and assess their biomechanical behavior when bonded to dentin analog.</div></div><div><h3>Materials and methods</h3><div>Five dental material classes were tested: lithium disilicate glass-ceramic (Emax CAD), leucite-reinforced glass-ceramic (Empress CAD), polymer-infiltrated ceramic (Vita Enamic), 3D-milled resin-based composite (Lava Ultimate), and 3D-printed resin-based composite (Crown X). Disk-shaped specimens (n = 20, d = 12 mm, t = 1 mm) were fabricated. BFS and BFM were measured using biaxial flexural testing. Additional specimens were bonded to dentin analog (NEMA G10) and tested for BFS. Finite element analysis (FEA) evaluated stress distribution. Fractographic analysis used digital optical and scanning electron microscopy. Data was analyzed using one-way ANOVA and Weibull distribution (α = 0.05).</div></div><div><h3>Results</h3><div>Emax CAD exhibited highest mean BFS (312.71 ± 51.89 MPa) and BFM (41.30 ± 0.76 GPa), significantly superior to other materials (P < 0.05). Crown X demonstrated second-highest BFS (156.55 ± 30.88 MPa) but lowest BFM (10.77 ± 0.40 GPa). When bonded to dentin analog, BFS ranking changed: Emax CAD > Empress CAD > Enamic > Lava Ultimate > Crown X. FEA revealed materials with higher moduli retained stress within restoration, while lower modulus materials transferred stress to dentin analog. Weibull analysis showed Vita Enamic had highest Weibull modulus when bonded, indicating lowest variability, while Emax CAD showed lowest despite superior strength.</div></div><div><h3>Conclusions</h3><div>3D-milled lithium disilicate (Emax CAD) demonstrated superior mechanical properties and stress distribution. While 3D-printed composite (Crown X) showed promising strength when tested alone, performance significantly decreased when bonded to dentin analog.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"173 \",\"pages\":\"Article 107202\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125003182\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125003182","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Evaluating the biomechanical properties of 3D-milled and 3D-printed restorative dental materials
Objective
The aim of this study was to evaluate the biaxial flexural strength (BFS) and modulus (BFM) of 3D-milled and 3D-printed restorative materials and assess their biomechanical behavior when bonded to dentin analog.
Materials and methods
Five dental material classes were tested: lithium disilicate glass-ceramic (Emax CAD), leucite-reinforced glass-ceramic (Empress CAD), polymer-infiltrated ceramic (Vita Enamic), 3D-milled resin-based composite (Lava Ultimate), and 3D-printed resin-based composite (Crown X). Disk-shaped specimens (n = 20, d = 12 mm, t = 1 mm) were fabricated. BFS and BFM were measured using biaxial flexural testing. Additional specimens were bonded to dentin analog (NEMA G10) and tested for BFS. Finite element analysis (FEA) evaluated stress distribution. Fractographic analysis used digital optical and scanning electron microscopy. Data was analyzed using one-way ANOVA and Weibull distribution (α = 0.05).
Results
Emax CAD exhibited highest mean BFS (312.71 ± 51.89 MPa) and BFM (41.30 ± 0.76 GPa), significantly superior to other materials (P < 0.05). Crown X demonstrated second-highest BFS (156.55 ± 30.88 MPa) but lowest BFM (10.77 ± 0.40 GPa). When bonded to dentin analog, BFS ranking changed: Emax CAD > Empress CAD > Enamic > Lava Ultimate > Crown X. FEA revealed materials with higher moduli retained stress within restoration, while lower modulus materials transferred stress to dentin analog. Weibull analysis showed Vita Enamic had highest Weibull modulus when bonded, indicating lowest variability, while Emax CAD showed lowest despite superior strength.
Conclusions
3D-milled lithium disilicate (Emax CAD) demonstrated superior mechanical properties and stress distribution. While 3D-printed composite (Crown X) showed promising strength when tested alone, performance significantly decreased when bonded to dentin analog.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.