利用图神经网络揭示基因组尺度代谢网络的热力学原理。

IF 7.7
Wenchao Fan, Yonghong Hao, Xiangyu Hou, Chuyun Ding, Dan Huang, Weiyan Zheng, Ziwei Dai
{"title":"利用图神经网络揭示基因组尺度代谢网络的热力学原理。","authors":"Wenchao Fan, Yonghong Hao, Xiangyu Hou, Chuyun Ding, Dan Huang, Weiyan Zheng, Ziwei Dai","doi":"10.1016/j.cels.2025.101393","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of metabolic thermodynamics is limited by the lack of genome-scale data on the standard Gibbs free energy change (Δ<sub>r</sub>G°) of metabolic reactions. Here, we present dGbyG, a graph neural network (GNN)-based model for predicting Δ<sub>r</sub>G° with superior accuracy, versatility, robustness, and generalization ability. Integration of dGbyG predictions into metabolic networks facilitated model curation, improved flux prediction accuracy, and identified thermodynamic driver reactions (TDRs) with substantial negative values of the reaction Gibbs free energy change (Δ<sub>r</sub>G). TDRs showed distinctive network topological features and heterogeneous enzyme expression, implying coupling between reaction thermodynamics and network topology for efficient metabolic regulation. We also discovered a universal pattern of thermodynamics in linear metabolic pathways, explained by a multi-objective optimization model balancing the needs to maximize pathway flux and minimize enzyme and metabolite loads. Our work expands accessible thermodynamic data and elucidates optimality principles in metabolism at the genome scale. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101393"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling principles of thermodynamics for genome-scale metabolic networks using graph neural networks.\",\"authors\":\"Wenchao Fan, Yonghong Hao, Xiangyu Hou, Chuyun Ding, Dan Huang, Weiyan Zheng, Ziwei Dai\",\"doi\":\"10.1016/j.cels.2025.101393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our understanding of metabolic thermodynamics is limited by the lack of genome-scale data on the standard Gibbs free energy change (Δ<sub>r</sub>G°) of metabolic reactions. Here, we present dGbyG, a graph neural network (GNN)-based model for predicting Δ<sub>r</sub>G° with superior accuracy, versatility, robustness, and generalization ability. Integration of dGbyG predictions into metabolic networks facilitated model curation, improved flux prediction accuracy, and identified thermodynamic driver reactions (TDRs) with substantial negative values of the reaction Gibbs free energy change (Δ<sub>r</sub>G). TDRs showed distinctive network topological features and heterogeneous enzyme expression, implying coupling between reaction thermodynamics and network topology for efficient metabolic regulation. We also discovered a universal pattern of thermodynamics in linear metabolic pathways, explained by a multi-objective optimization model balancing the needs to maximize pathway flux and minimize enzyme and metabolite loads. Our work expands accessible thermodynamic data and elucidates optimality principles in metabolism at the genome scale. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101393\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏代谢反应的标准吉布斯自由能变化(ΔrG°)的基因组尺度数据,我们对代谢热力学的理解受到限制。在这里,我们提出了dGbyG,一种基于图神经网络(GNN)的模型,用于预测ΔrG°,具有优越的准确性,通用性,鲁棒性和泛化能力。将dGbyG预测整合到代谢网络中,有助于模型管理,提高通量预测精度,并识别出Gibbs自由能变化为负值的热力学驱动反应(TDRs) (ΔrG)。TDRs表现出独特的网络拓扑特征和异质酶表达,表明反应热力学和网络拓扑之间存在耦合,可有效调节代谢。我们还发现了线性代谢途径中热力学的普遍模式,这可以用多目标优化模型来解释,该模型平衡了最大化途径通量和最小化酶和代谢物负荷的需求。我们的工作扩展了可访问的热力学数据,并阐明了基因组尺度上代谢的最优性原则。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling principles of thermodynamics for genome-scale metabolic networks using graph neural networks.

Our understanding of metabolic thermodynamics is limited by the lack of genome-scale data on the standard Gibbs free energy change (ΔrG°) of metabolic reactions. Here, we present dGbyG, a graph neural network (GNN)-based model for predicting ΔrG° with superior accuracy, versatility, robustness, and generalization ability. Integration of dGbyG predictions into metabolic networks facilitated model curation, improved flux prediction accuracy, and identified thermodynamic driver reactions (TDRs) with substantial negative values of the reaction Gibbs free energy change (ΔrG). TDRs showed distinctive network topological features and heterogeneous enzyme expression, implying coupling between reaction thermodynamics and network topology for efficient metabolic regulation. We also discovered a universal pattern of thermodynamics in linear metabolic pathways, explained by a multi-objective optimization model balancing the needs to maximize pathway flux and minimize enzyme and metabolite loads. Our work expands accessible thermodynamic data and elucidates optimality principles in metabolism at the genome scale. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信