LCA-Med:用于检测不平衡医学图像分布的轻量级跨模态自适应特征处理模块。

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiang Li , Long Lan , Husam Lahza , Shaowu Yang , Shuihua Wang , Yong Liang , Hudan Pan , Wenjing Yang , Hengzhu Liu , Yudong Zhang
{"title":"LCA-Med:用于检测不平衡医学图像分布的轻量级跨模态自适应特征处理模块。","authors":"Xiang Li ,&nbsp;Long Lan ,&nbsp;Husam Lahza ,&nbsp;Shaowu Yang ,&nbsp;Shuihua Wang ,&nbsp;Yong Liang ,&nbsp;Hudan Pan ,&nbsp;Wenjing Yang ,&nbsp;Hengzhu Liu ,&nbsp;Yudong Zhang","doi":"10.1016/j.neunet.2025.108116","DOIUrl":null,"url":null,"abstract":"<div><div>Data distribution discrepancy across datasets is one of the major obstacles hindering the improvement of the accuracy of cross-domain adaptive detection of medical images. To address this challenge, we propose a novel lightweight cross-modal adaptive detection module named LCA-Med (LCaM). The proposed module boasts a lightweight structure and a minimalistic parameter count, thereby facilitating its integration into the anterior segment of a diverse array of foundational and downstream networks. It is adept at serving as a feature preprocessor, proficiently extracting pertinent information regrading pathologies from a array of images (image modality) produced through varied medical imaging techniques, all guided by the input of prompts (text modality). We also propose a novel cross-modal medical image adaptive detection method, LCA-Med CNX (LCaM-CNX), and a novel cross-domain adaptive detection training paradigm that incorporates generated dataset groups, an attention module, and a meta-heuristic algorithm. Experimental results on six medical image datasets compared with ten state-of-the-art methods demonstrate that the LCaM-CNX trained following the proposed paradigm achieves the best performance on five datasets and competitive performance on the other dataset. Notably, our method outperforms the state-of-the-art methods more when the data distribution is more imbalanced.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108116"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCA-Med: A lightweight cross-modal adaptive feature processing module for detecting imbalanced medical image distribution\",\"authors\":\"Xiang Li ,&nbsp;Long Lan ,&nbsp;Husam Lahza ,&nbsp;Shaowu Yang ,&nbsp;Shuihua Wang ,&nbsp;Yong Liang ,&nbsp;Hudan Pan ,&nbsp;Wenjing Yang ,&nbsp;Hengzhu Liu ,&nbsp;Yudong Zhang\",\"doi\":\"10.1016/j.neunet.2025.108116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data distribution discrepancy across datasets is one of the major obstacles hindering the improvement of the accuracy of cross-domain adaptive detection of medical images. To address this challenge, we propose a novel lightweight cross-modal adaptive detection module named LCA-Med (LCaM). The proposed module boasts a lightweight structure and a minimalistic parameter count, thereby facilitating its integration into the anterior segment of a diverse array of foundational and downstream networks. It is adept at serving as a feature preprocessor, proficiently extracting pertinent information regrading pathologies from a array of images (image modality) produced through varied medical imaging techniques, all guided by the input of prompts (text modality). We also propose a novel cross-modal medical image adaptive detection method, LCA-Med CNX (LCaM-CNX), and a novel cross-domain adaptive detection training paradigm that incorporates generated dataset groups, an attention module, and a meta-heuristic algorithm. Experimental results on six medical image datasets compared with ten state-of-the-art methods demonstrate that the LCaM-CNX trained following the proposed paradigm achieves the best performance on five datasets and competitive performance on the other dataset. Notably, our method outperforms the state-of-the-art methods more when the data distribution is more imbalanced.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"Article 108116\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025009967\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025009967","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据集之间的数据分布差异是阻碍医学图像跨域自适应检测精度提高的主要障碍之一。为了解决这一挑战,我们提出了一种新的轻量级跨模态自适应检测模块LCA-Med (LCaM)。所提出的模块具有轻量级的结构和极简的参数计数,从而促进其集成到各种基础和下游网络的前段。它擅长作为特征预处理器,熟练地从通过各种医学成像技术产生的一系列图像(图像模态)中提取有关病理的相关信息,所有这些都由提示输入(文本模态)引导。我们还提出了一种新的跨模态医学图像自适应检测方法LCA-Med CNX (LCaM-CNX),以及一种新的跨域自适应检测训练范式,该范式结合了生成的数据集组、注意力模块和元启发式算法。在6个医学图像数据集上的实验结果与10种最先进的方法进行了比较,结果表明,按照所提出的范式训练的LCaM-CNX在5个数据集上取得了最佳性能,在其他数据集上取得了竞争性能。值得注意的是,当数据分布更不平衡时,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LCA-Med: A lightweight cross-modal adaptive feature processing module for detecting imbalanced medical image distribution
Data distribution discrepancy across datasets is one of the major obstacles hindering the improvement of the accuracy of cross-domain adaptive detection of medical images. To address this challenge, we propose a novel lightweight cross-modal adaptive detection module named LCA-Med (LCaM). The proposed module boasts a lightweight structure and a minimalistic parameter count, thereby facilitating its integration into the anterior segment of a diverse array of foundational and downstream networks. It is adept at serving as a feature preprocessor, proficiently extracting pertinent information regrading pathologies from a array of images (image modality) produced through varied medical imaging techniques, all guided by the input of prompts (text modality). We also propose a novel cross-modal medical image adaptive detection method, LCA-Med CNX (LCaM-CNX), and a novel cross-domain adaptive detection training paradigm that incorporates generated dataset groups, an attention module, and a meta-heuristic algorithm. Experimental results on six medical image datasets compared with ten state-of-the-art methods demonstrate that the LCaM-CNX trained following the proposed paradigm achieves the best performance on five datasets and competitive performance on the other dataset. Notably, our method outperforms the state-of-the-art methods more when the data distribution is more imbalanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信