迈向包含甲基化碱基的扩展核苷酸密码的分子进化表观基因组学。

IF 2.9 2区 生物学 Q1 GENETICS & HEREDITY
Shinya Yoshida, Ikuo Uchiyama, Masaki Fukuyo, Mototsugu Kato, Desirazu N Rao, Mutsuko Konno, Shin-Ichi Fujiwara, Takeshi Azuma, Ichizo Kobayashi, Hirohisa Kishino
{"title":"迈向包含甲基化碱基的扩展核苷酸密码的分子进化表观基因组学。","authors":"Shinya Yoshida, Ikuo Uchiyama, Masaki Fukuyo, Mototsugu Kato, Desirazu N Rao, Mutsuko Konno, Shin-Ichi Fujiwara, Takeshi Azuma, Ichizo Kobayashi, Hirohisa Kishino","doi":"10.1093/dnares/dsaf025","DOIUrl":null,"url":null,"abstract":"<p><p>In molecular evolution analyses, genomic DNA sequence information is usually represented in the form of 4 bases (ATGC). However, research since the turn of the century has revealed the importance of epigenetic genome modifications, such as DNA base methylation, which can now be decoded using advanced sequence technologies. Here we provide an integrated framework for analyzing molecular evolution of nucleotide substitution, methylation, and demethylation using an expanded nucleotide code that incorporates different types of methylated bases. As a first attempt, we analyzed substitution rates between bases, both unmethylated and methylated ones. As the model methylomes, we chose those of Helicobacter pylori, an unicellular bacterium with the largest known repertoire of sequence-specific DNA methyltransferases. We found that the demethylation rates are remarkably high while the methylation rates are comparable with the substitution rates between unmethylated bases. We found that the ribosomal proteins known for sequence conservation showed high methylation and demethylation frequencies, whereas the genes for DNA methyltransferases themselves showed low methylation and demethylation frequencies compared to base substitution. This work represents the first step towards molecular evolutionary epigenomics, which, we expect, would contribute to understanding epigenome evolution.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards molecular evolutionary epigenomics with an expanded nucleotide code involving methylated bases.\",\"authors\":\"Shinya Yoshida, Ikuo Uchiyama, Masaki Fukuyo, Mototsugu Kato, Desirazu N Rao, Mutsuko Konno, Shin-Ichi Fujiwara, Takeshi Azuma, Ichizo Kobayashi, Hirohisa Kishino\",\"doi\":\"10.1093/dnares/dsaf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In molecular evolution analyses, genomic DNA sequence information is usually represented in the form of 4 bases (ATGC). However, research since the turn of the century has revealed the importance of epigenetic genome modifications, such as DNA base methylation, which can now be decoded using advanced sequence technologies. Here we provide an integrated framework for analyzing molecular evolution of nucleotide substitution, methylation, and demethylation using an expanded nucleotide code that incorporates different types of methylated bases. As a first attempt, we analyzed substitution rates between bases, both unmethylated and methylated ones. As the model methylomes, we chose those of Helicobacter pylori, an unicellular bacterium with the largest known repertoire of sequence-specific DNA methyltransferases. We found that the demethylation rates are remarkably high while the methylation rates are comparable with the substitution rates between unmethylated bases. We found that the ribosomal proteins known for sequence conservation showed high methylation and demethylation frequencies, whereas the genes for DNA methyltransferases themselves showed low methylation and demethylation frequencies compared to base substitution. This work represents the first step towards molecular evolutionary epigenomics, which, we expect, would contribute to understanding epigenome evolution.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsaf025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsaf025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在分子进化分析中,基因组DNA序列信息通常以4碱基(ATGC)的形式表示。然而,自世纪之交以来的研究已经揭示了表观遗传基因组修饰的重要性,例如DNA碱基甲基化,现在可以使用先进的序列技术解码。在这里,我们提供了一个集成的框架来分析核苷酸取代、甲基化和去甲基化的分子进化,使用扩展的核苷酸代码,包括不同类型的甲基化碱基。作为第一次尝试,我们分析了碱基之间的取代率,包括未甲基化和甲基化的碱基。作为模型甲基组,我们选择了幽门螺杆菌的甲基组,这是一种单细胞细菌,具有已知最大的序列特异性DNA甲基转移酶。我们发现去甲基化率非常高,而甲基化率与未甲基化碱基之间的取代率相当。我们发现,已知的序列保守核糖体蛋白显示出高甲基化和去甲基化频率,而与碱基取代相比,DNA甲基转移酶基因本身显示出低甲基化和去甲基化频率。这项工作代表了分子进化表观基因组学的第一步,我们期望这将有助于理解表观基因组的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards molecular evolutionary epigenomics with an expanded nucleotide code involving methylated bases.

In molecular evolution analyses, genomic DNA sequence information is usually represented in the form of 4 bases (ATGC). However, research since the turn of the century has revealed the importance of epigenetic genome modifications, such as DNA base methylation, which can now be decoded using advanced sequence technologies. Here we provide an integrated framework for analyzing molecular evolution of nucleotide substitution, methylation, and demethylation using an expanded nucleotide code that incorporates different types of methylated bases. As a first attempt, we analyzed substitution rates between bases, both unmethylated and methylated ones. As the model methylomes, we chose those of Helicobacter pylori, an unicellular bacterium with the largest known repertoire of sequence-specific DNA methyltransferases. We found that the demethylation rates are remarkably high while the methylation rates are comparable with the substitution rates between unmethylated bases. We found that the ribosomal proteins known for sequence conservation showed high methylation and demethylation frequencies, whereas the genes for DNA methyltransferases themselves showed low methylation and demethylation frequencies compared to base substitution. This work represents the first step towards molecular evolutionary epigenomics, which, we expect, would contribute to understanding epigenome evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信