一个深度学习管道,用于准确和自动的恢复,分割和量化树突棘。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Sergio Bernal-Garcia, Alexa P Schlotter, Daniela B Pereira, Aleksandra J Recupero, Franck Polleux, Luke A Hammond
{"title":"一个深度学习管道,用于准确和自动的恢复,分割和量化树突棘。","authors":"Sergio Bernal-Garcia, Alexa P Schlotter, Daniela B Pereira, Aleksandra J Recupero, Franck Polleux, Luke A Hammond","doi":"10.1016/j.crmeth.2025.101179","DOIUrl":null,"url":null,"abstract":"<p><p>Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present restoration enhanced spine and neuron analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets with limited signal, such as rapid volumetric imaging and in vivo two-photon microscopy. Extensive validation against expert annotations and comparison with other software demonstrate RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101179"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning pipeline for accurate and automated restoration, segmentation, and quantification of dendritic spines.\",\"authors\":\"Sergio Bernal-Garcia, Alexa P Schlotter, Daniela B Pereira, Aleksandra J Recupero, Franck Polleux, Luke A Hammond\",\"doi\":\"10.1016/j.crmeth.2025.101179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present restoration enhanced spine and neuron analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets with limited signal, such as rapid volumetric imaging and in vivo two-photon microscopy. Extensive validation against expert annotations and comparison with other software demonstrate RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101179\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

树突棘的量化是研究突触连通性的必要条件,但目前大多数方法需要手动调整或多种软件工具的组合才能获得最佳结果。在这里,我们提出了恢复增强脊柱和神经元分析(RESPAN),这是一个开源的管道,集成了最先进的深度学习,用于图像恢复,分割和分析,在一个易于部署,用户友好的界面中。利用内容感知恢复来增强信号、对比度和各向同性分辨率,进一步增强了RESPAN在各种样品中对脊柱、树突分支和躯体的鲁棒检测,包括具有有限信号的挑战性数据集,如快速体积成像和体内双光子显微镜。针对专家注释的广泛验证以及与其他软件的比较表明,RESPAN在多种成像模式下具有卓越的准确性和可重复性。相对于目前可用的方法,RESPAN在可用性方面提供了显著的改进,通过神经科学社区的可访问资源,简化和民主化了对高级功能组合的访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning pipeline for accurate and automated restoration, segmentation, and quantification of dendritic spines.

Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present restoration enhanced spine and neuron analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets with limited signal, such as rapid volumetric imaging and in vivo two-photon microscopy. Extensive validation against expert annotations and comparison with other software demonstrate RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信