{"title":"小鼠特异性单细胞细胞因子活性预测和估计(MouSSE)。","authors":"Azka Javaid, H Robert Frost","doi":"10.1371/journal.pcbi.1013475","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate cell-level characterization of cytokine activity is important for understanding the signaling processes underpinning a wide range of immune-mediated conditions such as auto-immune disease, cancer and response to infection. We previously proposed the SCAPE (Single cell transcriptomics-level Cytokine Activity Prediction and Estimation) method to address the challenges associated with cytokine activity estimation in human single cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) data. Here, we propose a new method MouSSE (Mouse-Specific Single cell transcriptomics level cytokine activity prediction and Estimation) for performing cytokine activity estimation in murine scRNA-seq and ST data. MouSSE estimates the cell-level activity of 86 distinct cytokines using a gene set scoring approach. The cytokine-specific gene sets used by MouSSE are constructed using experimental cytokine stimulation data from the Immune Dictionary and cell-level scores are computed using a modification of the Variance-adjusted Mahalanobis (VAM) technique that supports both positive and negative gene weights. MouSSE is validated using data from both the Immune Dictionary via stratified cross-validation and external scRNA-seq and ST datasets against 10 cytokine activity estimation methods. These results demonstrate that MouSSE outperforms comparable methods for cell-level cytokine activity estimation in mouse scRNA-seq and ST data. An example vignette and installation instructions for the MouSSE R package are provided at https://github.com/azkajavaid/MousseR-package.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013475"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mouse-Specific Single cell cytokine activity prediction and Estimation (MouSSE).\",\"authors\":\"Azka Javaid, H Robert Frost\",\"doi\":\"10.1371/journal.pcbi.1013475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate cell-level characterization of cytokine activity is important for understanding the signaling processes underpinning a wide range of immune-mediated conditions such as auto-immune disease, cancer and response to infection. We previously proposed the SCAPE (Single cell transcriptomics-level Cytokine Activity Prediction and Estimation) method to address the challenges associated with cytokine activity estimation in human single cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) data. Here, we propose a new method MouSSE (Mouse-Specific Single cell transcriptomics level cytokine activity prediction and Estimation) for performing cytokine activity estimation in murine scRNA-seq and ST data. MouSSE estimates the cell-level activity of 86 distinct cytokines using a gene set scoring approach. The cytokine-specific gene sets used by MouSSE are constructed using experimental cytokine stimulation data from the Immune Dictionary and cell-level scores are computed using a modification of the Variance-adjusted Mahalanobis (VAM) technique that supports both positive and negative gene weights. MouSSE is validated using data from both the Immune Dictionary via stratified cross-validation and external scRNA-seq and ST datasets against 10 cytokine activity estimation methods. These results demonstrate that MouSSE outperforms comparable methods for cell-level cytokine activity estimation in mouse scRNA-seq and ST data. An example vignette and installation instructions for the MouSSE R package are provided at https://github.com/azkajavaid/MousseR-package.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013475\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013475\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013475","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Mouse-Specific Single cell cytokine activity prediction and Estimation (MouSSE).
The accurate cell-level characterization of cytokine activity is important for understanding the signaling processes underpinning a wide range of immune-mediated conditions such as auto-immune disease, cancer and response to infection. We previously proposed the SCAPE (Single cell transcriptomics-level Cytokine Activity Prediction and Estimation) method to address the challenges associated with cytokine activity estimation in human single cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) data. Here, we propose a new method MouSSE (Mouse-Specific Single cell transcriptomics level cytokine activity prediction and Estimation) for performing cytokine activity estimation in murine scRNA-seq and ST data. MouSSE estimates the cell-level activity of 86 distinct cytokines using a gene set scoring approach. The cytokine-specific gene sets used by MouSSE are constructed using experimental cytokine stimulation data from the Immune Dictionary and cell-level scores are computed using a modification of the Variance-adjusted Mahalanobis (VAM) technique that supports both positive and negative gene weights. MouSSE is validated using data from both the Immune Dictionary via stratified cross-validation and external scRNA-seq and ST datasets against 10 cytokine activity estimation methods. These results demonstrate that MouSSE outperforms comparable methods for cell-level cytokine activity estimation in mouse scRNA-seq and ST data. An example vignette and installation instructions for the MouSSE R package are provided at https://github.com/azkajavaid/MousseR-package.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.