{"title":"肝癌联合靶向治疗和免疫治疗治疗反应的自动分类。","authors":"Bing Quan, Mingrong Dai, Peiling Zhang, Shiping Chen, Jialiang Cai, Yujie Shao, Pengju Xu, Peizhao Li, Lei Yu","doi":"10.1093/jmcb/mjaf031","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine kinase inhibitors (TKIs) combined with immunotherapy regimens are now widely used for treating advanced hepatocellular carcinoma (HCC), but their clinical efficacy is limited to a subset of patients. Considering that the vast majority of advanced HCC patients lose the opportunity for liver resection and thus cannot provide tumor tissue samples, we leveraged the clinical and image data to construct a multimodal convolutional neural network (CNN)-Transformer model for predicting and analyzing tumor response to TKI-immunotherapy. An automatic liver tumor segmentation system, based on a two-stage 3D U-Net framework, delineates lesions by first segmenting the liver parenchyma and then precisely localizing the tumor. This approach effectively addresses the variability in clinical data and significantly reduces bias introduced by manual intervention. Thus, we developed a clinical model using only pre-treatment clinical information, a CNN model using only pre-treatment magnetic resonance imaging data, and an advanced multimodal CNN-Transformer model that fused imaging and clinical parameters using a training cohort (n = 181) and then validated them using an independent cohort (n = 30). In the validation cohort, the area under the curve (95% confidence interval) values were 0.720 (0.710-0.731), 0.695 (0.683-0.707), and 0.785 (0.760-0.810), respectively, indicating that the multimodal model significantly outperformed the single-modality baseline models across validations. Finally, single-cell sequencing with the surgical tumor specimens reveals tumor ecosystem diversity associated with treatment response, providing a preliminary biological validation for the prediction model. In summary, this multimodal model effectively integrates imaging and clinical features of HCC patients, has a superior performance in predicting tumor response to TKI-immunotherapy, and provides a reliable tool for optimizing personalized treatment strategies.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating classification of treatment responses to combined targeted therapy and immunotherapy in HCC.\",\"authors\":\"Bing Quan, Mingrong Dai, Peiling Zhang, Shiping Chen, Jialiang Cai, Yujie Shao, Pengju Xu, Peizhao Li, Lei Yu\",\"doi\":\"10.1093/jmcb/mjaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tyrosine kinase inhibitors (TKIs) combined with immunotherapy regimens are now widely used for treating advanced hepatocellular carcinoma (HCC), but their clinical efficacy is limited to a subset of patients. Considering that the vast majority of advanced HCC patients lose the opportunity for liver resection and thus cannot provide tumor tissue samples, we leveraged the clinical and image data to construct a multimodal convolutional neural network (CNN)-Transformer model for predicting and analyzing tumor response to TKI-immunotherapy. An automatic liver tumor segmentation system, based on a two-stage 3D U-Net framework, delineates lesions by first segmenting the liver parenchyma and then precisely localizing the tumor. This approach effectively addresses the variability in clinical data and significantly reduces bias introduced by manual intervention. Thus, we developed a clinical model using only pre-treatment clinical information, a CNN model using only pre-treatment magnetic resonance imaging data, and an advanced multimodal CNN-Transformer model that fused imaging and clinical parameters using a training cohort (n = 181) and then validated them using an independent cohort (n = 30). In the validation cohort, the area under the curve (95% confidence interval) values were 0.720 (0.710-0.731), 0.695 (0.683-0.707), and 0.785 (0.760-0.810), respectively, indicating that the multimodal model significantly outperformed the single-modality baseline models across validations. Finally, single-cell sequencing with the surgical tumor specimens reveals tumor ecosystem diversity associated with treatment response, providing a preliminary biological validation for the prediction model. In summary, this multimodal model effectively integrates imaging and clinical features of HCC patients, has a superior performance in predicting tumor response to TKI-immunotherapy, and provides a reliable tool for optimizing personalized treatment strategies.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf031\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf031","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Automating classification of treatment responses to combined targeted therapy and immunotherapy in HCC.
Tyrosine kinase inhibitors (TKIs) combined with immunotherapy regimens are now widely used for treating advanced hepatocellular carcinoma (HCC), but their clinical efficacy is limited to a subset of patients. Considering that the vast majority of advanced HCC patients lose the opportunity for liver resection and thus cannot provide tumor tissue samples, we leveraged the clinical and image data to construct a multimodal convolutional neural network (CNN)-Transformer model for predicting and analyzing tumor response to TKI-immunotherapy. An automatic liver tumor segmentation system, based on a two-stage 3D U-Net framework, delineates lesions by first segmenting the liver parenchyma and then precisely localizing the tumor. This approach effectively addresses the variability in clinical data and significantly reduces bias introduced by manual intervention. Thus, we developed a clinical model using only pre-treatment clinical information, a CNN model using only pre-treatment magnetic resonance imaging data, and an advanced multimodal CNN-Transformer model that fused imaging and clinical parameters using a training cohort (n = 181) and then validated them using an independent cohort (n = 30). In the validation cohort, the area under the curve (95% confidence interval) values were 0.720 (0.710-0.731), 0.695 (0.683-0.707), and 0.785 (0.760-0.810), respectively, indicating that the multimodal model significantly outperformed the single-modality baseline models across validations. Finally, single-cell sequencing with the surgical tumor specimens reveals tumor ecosystem diversity associated with treatment response, providing a preliminary biological validation for the prediction model. In summary, this multimodal model effectively integrates imaging and clinical features of HCC patients, has a superior performance in predicting tumor response to TKI-immunotherapy, and provides a reliable tool for optimizing personalized treatment strategies.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.